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outline:

o 1. Algebraic applications: spectrum of the Laplacian on the Basilica
Julia set (with Rogers, Brzoska, George, Jarvis et al. (research in progress)).

@ 2. Introduction and motivation: Mathematical Physics and spectral
analysis on fractals:

» Weak Uncertainty Principle (Okoudjou, Saloff-Coste, Strichartz, T.,
2008)

» Laplacians on fractals with spectral gaps gaps have nicer Fourier series
(Strichartz, 2005)

» Bohr asymptotics on infinite Sierpinski gasket (with Chen, Molchanov,
2015).

» Singularly continuous spectrum of a self-similar Laplacian on the
half-line (with Chen, 2016).

o 3. Dynamical systems: canonical diffusions on the pattern spaces of
aperiodic Delone sets (with Alonso-Ruiz, Hinz, Trevifio, 2018).

This is a part of the broader program to develop probabilistic, spectral and
vector analysis on singular spaces by carefully building approximations by
graphs or manifolds.
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Asymptotic aspects of Schreier graphs and Hanoi Towers groups

Rostislav Grigorchuk !, Zoran Sunik
Department of Mathematics, Tezas AGM University, MS-3368, College Station, TX, 77843-3368, USA
Received 23 January, 2006; accepted after revision +-+-+-+-+
Presented by Ftienne Ghys

Abstract

‘We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier
graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since
they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite
this article: R. Grigorchuk, Z. Sunik, C. R. Acad. Sci. Paris, Ser. I 344 (2006).

Figure 1. The automaton generating H*) and the Schreier graph of H®) at level 3 / L’automate engendrant H(*) et le
graphe de Schreier de H®) au niveau 3






analysis on

A part of an infinite Sierpinski gasket.
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Figure: An illustration to the computation of the spectrum on the infinite
Sierpiriski gasket. The curved lines show the graph of the function 2R(-).

Theorem (Rammal, Toulouse 1983, Béllissard 1988,
Fukushima, Shima 1991, T. 1998, Quint 2009)
On the infinite Sierpirniski gasket the spectrum of the Laplacian consists of a dense

set of eigenvalues P371(X) of infinite multiplicity and a singularly
continuous component of spectral multiplicity one supported on SR~1(JR).
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Part 1: Spectral Analysis of the Basilica Graphs (with Luke
Rogers, Toni Brzoska, Courtney George, Samantha Jarvis
et al.)

The question of existence of groups with intermediate growth, i.e.
subexponential but not polynomial, was asked by Milnor in 1968 and
answered in the positive by Grigorchuk in 1984. There are still open questions in
this area, and a complete picture of which orders of growth are possible, and
which are not, is missing.

The Basilica group is a group generated by a finite automation acting on the
binary tree in a self-similar fashion, introduced by R. Grigorchuk and A. Zuk in
2002, does not belong to the closure of the set of groups of subexponential
growth under the operations of group extension and direct limit.

In 2005 L. Bartholdi and B. Virag further showed it to be amenable,
making the Basilica group the 1st example of an amenable but not
subexponentially amenable group (also “Miinchhausen trick” and
amenability of self-similar groups by V.A. Kaimanovich).
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The Basilica fractal is the Julia set of the polynomial z2 — 1. In 2005, V.
Nekrashevych described the group as the iterated monodromy group, and
there exists a natural way to associate it to the Basilica fractal
(Nekrashevych+T., 2008).

In Schreier graphs of the Basilica group (2010), Nagnibeda et al. classified
up to isomorphism all possible limits of finite Schreier graphs of the Basilica group.

In Laplacians on the Basilica Julia set (2010), L. Rogers+T. constructed
Dirichlet forms and the corresponding Laplacians on the Basilica fractal in two
different ways: by imposing a self-similar harmonic structure and a graph-directed
self-simliar structure on the fractal.

In 2012-2015,

Dong, Flock, Molitor, Ott, Spicer, Totari and Strichartz provided numerical
techniques to approximate eigenvalues and eigenfunctions on families of
Laplacians on the Julia sets of z2 + c.
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Spectral Analysis of the Basilica Graphs

Replacement Rule and the Graphs G,
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Spectral Analysis of the Basilica Graphs

Distribution of Eigenvalues, Level 13

Cumulative Distribution of Eigenvalues, Level 13

Cumulative Distribution
T

Egenvalie



Spectral Analysis of the Basilica Graphs

One can define a Dirichlet to Neumann map for the two boundary points
of the graphs G,. One can construct a dynamical system to determine
these maps (which are two by two matrices). The dynamical system allows
us to prove the following.

Theorem

In the Hausdorff metric, limsup o(L(") has a gap that contains the

n—o0
interval (2.5,2.8).

| A

Conjecture

In the Hausdorff metric, limsup o(L(") has infinitely many gaps.
n—o0

o

Proving the conjecture would be interesting. One would be able to apply
the results discovered by R. Strichartz in Laplacians on Fractals with
Spectral Gaps have nicer Fourier Series (2005).



Spectral Analysis of the Basilica Graphs

Infinite Blow-ups of G,

Definition
Let {kn}nen be a strictly increasing subsequence of the natural numbers.
For each n, embed Gy, in some isomorphic subgraph of Gy, ,. The
corresponding infinite blow-up is G 1= Up>0 Gk, .

Assumption
The infinite blow-up G, satisfies:

@ For n > 1, the long path of Gi _, is embedded in a loop v, of G, .

n—1

@ Apart from I, , and r,,_,, no vertex of the long path can be the
3,6,9 or 12 o'clock vertex of 7.

@ The only vertices of Gy, that connect to vertices outside the graph
are the boundary vertices of Gk, .




Spectral Analysis of the Basilica Graphs

0



Spectral Analysis of the Basilica Graphs

Theorem

(kn) _ (Un)
(1) o(L*, )= o(L§?).

Yn
(2) The spectrum of L(>) is pure point. The set of eigenvalues of L(>) is

U otg”) = | Mo},

n>0 n>0

where the polynomials ¢, are the characteristic polynomials of Lg"), as
defined in the previous proposition.

(3) Moreover, the set of eigenfunctions of L(>) with finite support is
complete in (2.




The geometry behind the pure point spectrum on
fractals (use local symmetries:-)

Malozemov-T. 1995
Barlow-Kigami 1997
Kigami 1998

T. 1998

Sabot 2000

Kajino 2013-2014 (heat kernel oscillations)

“ZB

Hauser 2018
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Figure 7: Dividing the SSG into six parts. Figure 8: Gluing ¢.

Elias Hauser 2018 (based on Uta Freiberg and Patricia Alonso-Ruiz 2012-2018)
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T. 1998, 2007: http://www.math.uconn.edu/~teplyaev/gregynog/
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Part 2: Motivation coming from Mathematical Physics

81412014 Frangois Englert - Wikipedia, the free encyclopedia

Francois Englert

From Wikipedia, the free encyclopedia

Francois Baron Englert (French: [aglex]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,

C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string
theory and supergavity,[‘q He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,

Francois Englert

Frangois Englert in Israel, 2007
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Nuclear Physics B280 [FS 18] (1987) 147-180
North-Holland, Amsterdam

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES

F. ENGLERT, J.-M. FRERE! and M. ROOMAN?

Physique Théorique, C.P. 225, Université Libre de Bruxelles, 1050 Brussels, Belgium

Ph. SPINDEL

Faculté des Sciences, Université de 'Etat a Mons, 7000 Mons, Belgium

Received 19 February 1986

We take a model of foamy space-time structure described by self-similar fractals. We study
the propagation of a scalar field on such a background and we show that for almost any initial
conditions the renormalization group equations lead to an effective highly symmetric metric at
large scale.



al. / Metric space-time

F. Englert et

150

al 3-fractal.

of a 2-dimension

Fig. 1. The first two iterations



[ Ioz
|
|
! 1"
I
|
1
|
o
. % 412
0N
N ! o
N x4
MINKOWSKIAN _\_{13_ EUCLIDEAN
METRICS 2 I\\ METRICS 03 —
. 1
ol
7 /
M
EUCLIDEAN :
METRICS |
|
|
9 |
P
Y =
z
/ |
7 [
7
/ |
7 |
Ve
/ |
e |
’ [
Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = — /(B + 1) separates the domain of euclidean

metrics from minkowskian metrics and corresponds — except at the origin - to 1-dimensional metrics. M,, M,, M; denote unstable minkowskian
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 0y, 0, and 0, associated to 0-dimensional
geometries are located at the origin and at infinity on the (a, B) coordinates axis. The six straight lines are subsets invariant with respect to the

recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of

them the 10th point (a = —56.4, B = —52.5) is outside the frame of the figure.
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the euclidean fixed point. Vertices are labelled according to fig. 4.
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Figure 6.4. Geometric interpretation of Proposition 6.1.
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The Spectral Dimension of the Universe is Seale Dependent

I, Ambjgm,"** . Jurkiewicz, " and R, Lol

"The Nils Bohr Instne Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark
"Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University,
Reymonta 4, PL 30-059 Krakow, Poland
JTnstitute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3384 CE Utrecht, The Netherlands
(Received 13 May 2005; published 20 October 2005)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing” at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOL 10.1103/PhysRevLett 95.171301 PACS numbers: 04.60.Gw, 04.60Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator’—A shared  tral dimension, a diffeomorphism-invariant quantity ob-
hope of researchers in otherwise disparate approaches to  tained from studying diffusion on the quantum ensemble
quantum gravity s that the microstructure of space and o geometries. On large scales and within measuring ac-
time may provide a physical regulator for the ultraviolet ~ curacy, it is equal to four, in agreement with earlier mea-
infinities enconntered in nermrhative anantum field thearv.— surements of the laroe-seale dimensionality hased on the



other hand, the ‘“‘short-distance spectral dimension,” ob-
tained by extrapolating Eq. (12) to o — 0 is given by

Ds(o = 0) = 1.80 * 0.25, (15)

and thus is compatible with the integer value two.
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Fractal space-times under the microscope:
a renormalization group view on Monte Carlo data

Martin Reuter and Frank Saueressig
Institute of Physics, University of Mainz,
Staudingerweg 7, D-55099 Mainz, Germany
E-mail: reuter@thep.physik.uni-mainz.de,
saueressig@thep.physik.uni-mainz.de

ABSTRACT: The emergence of fractal features in the microscopic structure of space-time
is a common theme in many approaches to quantum gravity. In this work we carry out a
detailed renormalization group study of the spectral dimension d; and walk dimension d,,
associated with the effective space-times of asymptotically safe Quantum Einstein Grav-
ity (QEG). We discover three scaling regimes where these generalized dimensions are ap-
proximately constant for an extended range of length scales: a classical regime where
ds = d,d,, = 2, a semi-classical regime where dy = 2d/(2+d), d,, = 2+d, and the UV-fixed
point regime where dy = d/2,d,, = 4. On the length scales covered by three-dimensional
Monte Carlo simulations, the resulting spectral dimension is shown to be in very good

agreement with the data. This comparison also provides a natural explanation for the ap-
parent puzzle between the short distance behavior of the spectral dimension reported from
Causal Dynamical Triangulations (CDT). Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

KEYWORDS: Models of Quantum Gravity, Renormalization Group, Lattice Models of Grav-
ity, Nonperturbative Effects




Fractal space-times under the microscope:

A Renormalization Group view on Monte Carlo data

Martin Reuter and Frank Saueressig

a classical regime where d; = d,d,, = 2, a semi-classical regime where ds; = 2d/(2 + d),d,, =
2+ d, and the UV-fixed point regime where ds = d/2,d,, = 4. On the length scales covered



Weak Uncertainty Principle (Kasso Okoudjou, Laurent
Saloff-Coste, T., 2008)

The R! Heisenberg Uncertainty Principle is equivalent, if ||f||2 = 1, to

(/R/R Ix — yPIF ()| |F(y)I? dx dy> : (/R IF(x) 2 dx) . %

On a metric measure space (K, d, n) with an energy form €

a weak uncertainty principle

] Var,(u) £(u, u) > c\ (1)
holds for u € L?(K) () Dom(&)

Var,) = [[  dey) GOl )P du) duty). (2

provided either that d is the effective resistance metric, or some of the suitable
Poincare inequalities are satisfied.
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Laplacians on fractals with spectral gaps gaps have nicer
Fourier series (Robert Strichartz, 2005)

If the Laplacian has an infinite sequence of exponentially large spectral gaps and
the heat kernel satisfies sub-Gaussian estimates, then the partial sums of Fourier
series (spectral expansions of the Laplacian) converge uniformly along certain
special subsequences.

U.Andrews, J.P.Chen, G.Bonik, R.W.Martin, T.,

Wave equation on one-dimensional fractals with spectral decimation.
J. Fourier Anal. Appl. 23 (2017)
http://teplyaev.math.uconn.edu/fractalwave/

An introduction given in 2007:
http://www.math.uconn.edu/~teplyaev/gregynog/AT.pdf
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PHYSICAL REVIEW B VOLUME 31, NUMBER 3 1 FEBRUARY 1985

Energy spectrum for a fractal lattice in a magnetic field

Jayanth R. Banavar
Schlumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108

Leo Kadanoff
Department of Physics, University of Chicago, Chicago, Illinois 60637

A. M. M. Pruisken*
Schiumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108
(Received 10 September 1984)

To simulate a kind of magnetic field in a fractal environment we study the tight-binding
Schrodinger equation on a Sierpinski gasket. The magnetic field is represented by the introduction
of a phase onto each hopping matrix element. The energy levels can then be determined by either
direct diagonalization or recursive methods. The introduction of a phase breaks all the degeneracies
which exist in and dominate the zero-field solution. The spectrum in the field may be viewed as
considerably broader than the spectrum with no field. A novel feature of the recursion relations is
that it leads to a power-law behavior of the escape rate. Green's-function arguments suggest that a
majority of the eigenstates are truly extended despite the finite order of ramification of the fractal
lattice.
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FIG. 1. Fragment of the Sierpinski gasket. The phase of the
hopping matrix is equal to ¢ in the direction of the arrow and
—¢ otherwise.
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BAND SPECTRUM FOR AN ‘ELECTRON ON A SIERPINSKI GASKET IN A MAGNETIC FIELD
., IM; Ghez?
Centre de Physique Thébriquc. CNRS-Lurﬁihy, Case 907, F-13288, Marseille, Cedex 09, France
: S vand,
.+ Yin Yu Wang, R:Rammal* and B. Pannetier
CRTBT.C NRSi BP 166X; ,/Grenoble Cedex, France
. “,,, and
. Bellssard!
Centre de Physigue Théorique, CNRS-Luminy, Case 907, F-13288, Marseille, Cedex 09, France
~ (Received 20 July 1987 by S. Alexander)
We consider a quantum charged particle on a fractal lattice given by a
Sierpinski gasket, submitted:to a uniform magnetic field, in a tight
binding approximation. Its band spectrum is numerically computed
and exhibits a fractal structure. The ‘groundstate energy is also

compared to the superconductor transition curve measured for
Sierpinski lattice of superconducting material.
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choose the gauge in such a way that H depends only
upon o and o' in a periodic way with period one. We
will denote by Hiw, o) this operator from now on.

We also introduce the dilation operator D defined
as:

Delim) = ¢(2m). )
The scaling properties of this system are expressed in
the following Renormalization Group Equation
(RGE) [23];
E{El - H(e, o))'D = G{E* - H(o,*, a¥)}”,
3
where [7, 16];
0 G

(B =36 - 20U + TV

8"+ CY%,

{E* = TE" - XU + YV) + 4YJE
HU-DYS+ ) @

il

i) E*

Energy E

Magretic flux O

Fig. 2. Spectrum of H(w), computed by 10 iterations
of F. o is the horizontal variable, ranging from 0 to 1.
Eis the vertical variable, ranging from —4 to 4,



These results have been compared with an experi-
ment performed on an array of superconducting A1~
wires shaped like a Sierpinski gasket with six levels of
hierarchy. A description of this pattern generated by
e-beam lithography has been given in [20]. More de”

tails will be published in a separate paper [21]. The.
transition curve in the parameter space (7, B), where.”

Fig. 3. Four enlargements of the upper left corner of
F!& 2, showing the fractal nature of the spectrum,
with the approximate scaling law (7). « is the horizont-
al variable, ranging from 0to 2%, k = 2,4,6,8. Eis
the vertical variable, ranging from E, to 4, £, = 2.4,
3.68, 3.936, 3.9872.

- ODSEIvVes €Xperimentally e perioaiCity in tne para-

meter.a and also the scaling properties predicted by
the RGE (equation 3). The plot in Fig. 4 shows the
comparison between the experimental curve in log-log
scale together with the theoretical results for the edge

e ] [

I
Y etiat e / PVAN v
o : N ”‘// / | /\] {\

107 // /,/ \V \ .
oy e

ol o~
/NN 0

& a at 4 I 4t 1
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Fig. 4. Comparison between the calculated edge of the
spectrum (left scale) with the experimental result
(right scale) on the critical temperature of a supercon-
ducting gasket: AT,/7, vs o in log-log plot, where
o = ®/d, is the reduced magnetic flux in the elemen-
tary triangle of the gasket: equation 8 has been used to
calculate the theoretical curve using the best fit para-
meters as explained in the text. The two curves have
been shifted for clarity.



Renormalization Group Analysis and Quasicrystals
J. BELLISSARD

Wissenschaftskolleg zu Berlin & Centre de Physique Théorique de Marseille, CNRS.
On leave from the "Université de Provence”, Marseille.
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LINTRODUCTION

Several quantal systems involving scale invariant properties, have been studied during the
last few years by means of a Renormalization Group (RG) method. The most useful type
of models is probabiy the hamilionian describing the motion of a particle, phonon or

118

Renormalization group analysis and quasicrystals 119

electron, in 2 quasicrystal. The first quantity to be calculated is the energy spectrum, from
which we usualty get others like the density of states (DOS), thermodynamical information,
tike the heat capacity or the magnetic susccpublhty, or even various transport coefficients,
like the ivity. Using the spatial fons and scale
invariance, it is possible to get equatiohs satisfied by the moch which happen to be
sufficient to compute the spectrum in many cases. In particular the scale invariance will
produce fractal spectra and scaling laws for the physical quantities.
The main difficulty is that unlike the 1D case for which the calculation can usually be

performed by means of the transfer matrix method, the higher dimensional cases are far
from being under control yet. In this short paper we want to give an account of a new
strategy using operator algebras which should permit to extend the analysis to higher
dimension. Eventhough the method is not yet completely developed, it has already given a
certain number of convincing results, and we believe it should be the most efficient way of
studying these problems. In this paper we compare it with the transfer matrix formulation
for 1D chain and we show that both point of view are equivalent. We will only give an
insight of what happens for higher dimensional quasicrystals, for this part of the work is
still under progress.

2.JACOBI MATRIX OF A JULIA SET

2.1 The Julia Set of a Polynomial

The simplest model was designed in 1982 [Bellissard(82)}, to get a new class of
hamiltonians with Cantor spectra. It is the Jacobi matrix associated to a Julia set. Let P(z)
= 2Nap NI, +py. z+py be a polynomial with real coefficients. We then consider the
dynamical system on the complex planc defined by 2,,,=P(z,) . Cleatly the point at
infinity is fixed by P, and it is attractive, for there is R>0 big enough, such that
whenever fof 2R , then /P(z)] 2RV2 . Let { be a fixpoint, namely a solution of P({)= ¢,
and let D(¢) be the “domain of atiraction of ¢, namely the open set of points z such
that z,~¢ as n—eo. The Julia set J(P) of P is the complement of the union of the

- atiraction domain of all fixpoints. Since the point at infinity is always atmactive, J(P) is

always compact. A famous theorean by Julia and Fatou {Julia(18), Fatou(19), Douady(82)]
asserts that J(P) is completely disconnected whenever all eritical polats of P are attracted
by the point at infiniry.
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3.SIERPINSKY LATTICE IN A MAGN

3.1 The 2D Sierpinsky Lattice [Alexander(83,84), Rammal(84)]
“The Sierpinsky latice S in 2D is usually construcied according 10 the fig.1 below.
Narely, let ¢;,6, be two unit vectors making an angle of 60°. Then S is contained in the
st NeptNey . Letthen S, be the subset of points ¥€S with x= meney and 0 <
man <2t is recursively constructed a5 S; = (meptney 30 Smin 2], S =
SLUES+2ke JU [Sir2key) for k21, and § = UpySy -

Fig.1- The subset S of the Sicrpinsky Jauice in 2D

group analysis and quasicrystals 125

From this constuction it follows that 25 is included in $. A site in 28 is called "cven®,
the others "odd". Any odd site admits the decomposition 2x+y where xe§ and
yeT={epes er+ey] . The subsets T(x) = T+2x are called "blocks™. If xS , its nearest
neigbours are all points in S within a distance / of x

3.2 The Laplacean on §
‘The Laplace operators A, and 4. are defined on the Hilbert spaces (5] and £($\(0})
respectively by:

8,0 O = V2Z 00 006) 8.6 () = YO+ p_yiar 0
if Ixl =1, and

8,6 00 = Zyy i 03, if >, 9el(S), (11a)

Ay ()= Z e W x& S\0) , we (S\(0}) at)

Our goal is to compute the spectrum of 4 . In order to do so we will use the scale
invariance of the Sierpinsky lattice. The main result is the following [Rammal(34),
Bellissad(85))]

Theorem 3:  The spectrum of 4, is made of two infinite sequences of eigenvalues of
infinite multiplicity accumulating on the Julia set of the polynomial P(z) =
2(2-3) . The first sequence consists of one isolated cigenvalue in each gap
of J{P), whereas the other consists of one edge of cach gap of J(P). ¢
Proof: Letus introduce the dilation operator D defined by

Dy (x) = y(2x) xe8, e l(S) 12)

Itis a partial isometry such that DD*=1 . Then we claim that A, are solutions of the
following RG equation [Bellissard(35)]

D{z1-a}1D* = (@ 2)(z+1)/(z+2) (P(0)1-A}1, P(z) = 2(z-3) (13)



128 1. Bellissard

E = {2t - 722 - [2(XU+YV)+ dXjz + A4(1-UN/(82 + €212,
an

B+p =d+a) o~ ) - 3/% Arctan (S/C)

with:

S =[(XV + YUY +2¥]z+ 2V + XY), C=22 +[(XY = YV) +2K]z + 20U - Y3,
8)
X =cos 2me,Y =sin 2ne,  U=cos2a(o+er) V= sin 27 (ored)

Following the intuition provided by e lust section, the “dynamical spectrum’ is defined as
the invariant set.of the map F(2,0,6) = (E,5.f) of RxT? . Since i+ fi' = 4(a + o)
in (17), only one of the two nomalized fluxes is actuaily relevant, leading to an effective
2D map. Is the dynamical spectrum equal 10 the actual spectrum of the original operator ?
This is @ question with no answer yet. Nevertheless the numerical calculation of the
dypamical spectrum given in fig.2 below [Ghez(87)], shows that it should be.

One should point out there that this calculation has been compared to an experiment
performed in Grenoble, on a superconducting network designed according to fig. 1.
Landau-Ginzburg's theory {de Gennes(81), Alexandez(83)] shows that the transition
between the normal metal and the super conducting phases occurs in the (7,8) plane
(where T is the temperarure) on a curve which is simply related to the edge of the

dynamical spectrum as calc

ed above [Ghez(87)]. The comparison between theory and
experiment is actually very accurate as shown in fig.3 below.
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Following the intuition provided by the last section, the "dynamical spectrum” is defined as
the invariant set of the map F(z,c,0') = (E.B.B) of RxT? . Since B+ ' =4(e+ &)
in (17), only one of the two normalized fluxes is actually relevant, leading to an effeciive
2D map. Is the dynamical spectrum equal 1o the actual spectrum of the original operator ?
This is a question with no answer yet, Nevertheless the numerical calculation of the
dynamical spectrum given in fig.2 below [Ghez(§7)], shows that it should be.

One should point out there that this calculation has been compared to an experiment
performed in Grenoble, on a superconducting retwork designed according to fig. 1.
Landau-Ginzburg's theory [de Gennes(81), Alexander(83)] shows that the transition
between the normal metal and the super conducting phases occurs in the {T.B) plane
(where T is the temperature) on a curve which is simply related to the edge of the
dynamical spectrum as calculated above [Ghez(87)]. The comparison between theory and
experiment is actually very accurate as shown in fig.3 below.



Recent refs related to Dirac operators on fractals

D. Guido, T. Isola, Spectral triples for nested fractals.
J. Noncommut. Geom. 11 (2017)

M. Hinz, L. Rogers, Magnetic fields on resistance spaces.
J. Fractal Geom. 3 (2016)

D. Kelleher, M. Hinz, A. Teplyaev, Metrics and spectral triples for Dirichlet and
resistance forms. J. Noncommut. Geom. 9 (2015) arXiv:1309.5937

M. Hinz, A. Teplyaev, Dirac and magnetic Schrodinger operators on fractals.
J. Funct. Anal. 265 (2013), arXiv:1207.3077

M. lonescu, L. G. Rogers, A. Teplyaev, Derivations and Dirichlet forms on fractals.
Journal of Functional Analysis, 263 (2012) arXiv:1106.1450
note especially Theorem 5.24

V. Nekrashevych and A. Teplyaev, Groups and analysis on fractals. Analysis on
Graphs and its Applications, Proc. Symposia Pure Math., AMS, 77 (2008)
note especially Theorem 3.3
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Half-line example

oo 9o o o o o o o o
1 gqp P9 qp qp P9 Pq 9qp Pq qp
Figure: Transition probabilities in the pg random walk. Here p € (0,1) and
qg=1-—p.
F(0) — (1), ifx=20
(Apf)(x) = F(x) —qf(x —1) — pf(x+1), if37"¥x =1 (mod 3)

f(x) — pf(x — 1) — qf(x + 1), f3~™®x =2 (mod 3)

Theorem (J.P.Chen, T., 2016)

If p # % the Laplacian A, on £2(Z4.) has purely singularly continuous
spectrum.

2(22—32z+4(2+pq))

The spectrum is the Julia set of the polynomial R(z) = oq

a topological Cantor set of Lebesgue measure zero.

, which is
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Bohr asymptotics

For 1D Schodinger operator

Hy = —y" + V(x)p, x>0

if V(x) — 400 as x — +oo then (H. Weyl), the spectrum of H in
L2([0, c0), dx) is discrete and, under some technical conditions,

N V) = # () S A~ - [ VIR V) d.

This is known as the Bohr's formula. It can be generalized for R”.
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Theorem (Fractal Bohr's formula (Joe Chen, Stanislav Molchanov, T.,
J. Phys. A: Math. Theor. (2015)))

On infinite Sierpinski-type fractafolds, under mild assumptions,

. N(V,A)
" g(Vy) T ©

where

gV ) = [ (A= V()] 6 (5 1o8(h = V() ) old). (6

oo

where G is the Kigami-Lapidus periodic function, obtained via a renewal theorem.

v
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Part 3: Canonical diffusions on the pattern spaces of
aperiodic Delone sets (Patricia Alonso-Ruiz, Michael Hinz,
T., Rodrigo Trevifio)

A subset A C R is a Delone set if it is uniformly discrete:

Je>0: [X—y|>e VX,y €N

and relatively dense:

GR>0: AN BgR(X) # @ VX e R

A Delone set has finite local complexity if VR > 03 finitely many clusters

Py, ..., P, such that for any X € R9 there is an i such that the set Bgr(X) N A
is translation-equivalent to P;.

A Delone set A is aperiodic if A — £ = A implies £ = 0. It is repetitive if for
any cluster P C A there exists Rp > 0 such that for any X € RY the cluster
Bg.(X) N A contains a cluster which is translation-equivalent to P.

These sets have applications in crystallography (= 1920), coding theory,
approximation algorithms, and the theory of quasicrystals.
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Electron diffraction picture of a Zn-Mg-Ho quasicrystal
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pattern space of a Delone set

Let Ag C RY be a Delone set. The pattern space (hull) of Ag is the closure of
the set of translates of Ay with respect to the metric g, i.e.

Q/\u = {cp;(/\o) : FE Rd}.

Definition

Let Ag C R9 be a Delone set and denote by @5 (Ag) = Mg — t its translation by
the vector £ € R?. For any two translates A and Ay of Ag define o(A1, A;) =
inf{e >0: 35,€ B.(0): B1(0) N ps(N1) = B1(0) N pz(A2)} A 27172

v

Assumption

The action of R on Q is uniquely ergodic:
Q is a compact metric space with the unique R9-invariant probability measure .
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Topological solenoids

(similar topological features as the pattern space Q):

Sasha Teplyaev (UConn)

[m]
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Theorem

D IfW = V_I7t >0 is the standard Gaussian Brownian motion on R?, then for
(i) >

any N € Q the process X} := e, (A) =N — W, is a conservative Feller
diffusion on (2, ).

(i) The semigroup P.f(N) = E[F(X])] is

self-adjoint on Li, Feller but not strong Feller.

Its associated Dirichlet form is regular, strongly local, irreducible, recurrent,
and has Kusuoka-Hino dimension d.

(iii) The semigroup (P:):>0 does not admit heat kernels with
respect to pi. It does have Gaussian heat kernel with respect to the
not-o-finite (no Radon-Nykodim theorem) pushforward measure )\5

Pra(t, by (N2))  if A2 € orb(Ay),

otherwise.

pa(t, A1, \2) = (7)

(iv) There are no semi-bounded or L! harmonic functions
" Liouville-type”).
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no classical inequalities

Useful versions of the Poincare, Nash, Sobolev, Harnack
inequalities DO NOT HOLD, except in orbit-wise sense.
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spectral properties
Theorem

The unitary Koopman operators Uy on L?(R, u) defined by Uzf = f o o5
commute with the heat semigroup

U:P, = P,U;

hence commute with the Laplacian A, and all spectral operators, such as the
unitary Schrodinger semigroup.

... hence we may have continuous spectrum (no eigenvalues) under some
assumptions even though pu is a probability measure on the compact set €.

Under special conditions P; is connected to the evolution of a Phason:

“Phason is a quasiparticle existing in quasicrystals due to their specific,
quasiperiodic lattice structure. Similar to phonon, phason is associated with
atomic motion. However, whereas phonons are related to translation of atoms,
phasons are associated with atomic rearrangements. As a result of these
rearrangements, waves, describing the position of atoms in crystal, change phase,
thus the term “phason” (from the wikipedia)".
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https://en.wikipedia.org/wiki/Phason

Phason evolution

Corollary

The unitary Koopman operators Uz on L?(R, 1) defined by Uzf = f o 7
commute with the heat semigroup

Ui'Pt = Pt UE’

hence commute with the Laplacian A, and all spectral operators, including the
unitary Schrodinger semigroup e’At

U;-e'At — e'AtUE’

v

Recent physics work on phason ( “accounts for the freedom to choose the origin”):
Topological Properties of Quasiperiodic Tilings

(Yaroslav Don, Dor Gitelman, Eli Levy and Eric Akkermans

Technion Department of Physics)
https://phsites.technion.ac.il/eric/talks/

J. Bellissard, A. Bovier, and J.-M. Chez, Rev. Math. Phys. 04, 1 (1992).
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Another way to define a tiling is by using a characteristic function. We consider
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X (n, ¢) = sign[cos (270 47" + ) — cos (7A7)]
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phason—accounts for the freedom to choose the origin.
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Helmholtz, Hodge and de Rham

Theorem

Assume d = 1. Then the space L?(R, 1, R') admits the orthogonal
decomposition
L2(Q, u, R') = Im V @ R(dx). (8)

In other words, the Lz—cohomology is 1-dimensional, which is surprising because
the de Rham cohomology is not one dimensional.

M. Hinz, M. Rockner, T., Vector analysis for Dirichlet forms and quasilinear PDE
and SPDE on fractals, Stoch. Proc. Appl. (2013). M. Hinz, T., Local Dirichlet
forms, Hodge theory, and the Navier-Stokes equation on topologically
one-dimensional fractals, Trans. Amer. Math. Soc. (2015,2017).

Lorenzo Sadun. Topology of tiling spaces, volume 46 of University Lecture Series.
American Mathematical Society, Providence, RI, 2008. Johannes Kellendonk,
Daniel Lenz, and Jean Savinien. Mathematics of aperiodic order, volume 309.
Springer, 2015.
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end of the talk :-)

Thank you!

Sasha Teplyaev (UConn)
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