(1) Suppose one has 7 indistinguishable balls. How many ways can one put them in 3 boxes? Explain your solution.

Answer:
$$\begin{pmatrix} 9\\7 \end{pmatrix} = \begin{pmatrix} 9\\2 \end{pmatrix} = \begin{pmatrix} 8\\2 \end{pmatrix} + 8 = 36$$

(2) A pair of fair dice is rolled. What is the probability that the first die lands at least twice higher value as the second die?

Answer: $\frac{1}{4}$

(3) Suppose A is the event for which the probability is computed in the previous question, and B is the event "the second die is an even number". Are these events independent? Explain your solution.

Answer: Not independent

(4) The probability that an "accident prone" policy holder has an accident within a year is 0.8, while the probability that a "non-accident prone" policyholder has an accident within a year is 0.2. Assume that 30% of the policyholders are "accident prone". If a policyholder had an accident, what is the probability that this policyholder is not accident prone?

Answer: The probability that a random individual has an accident is $\mathbb{P}(A) = 0.3 \cdot .8 + 0.7 \cdot 0.2 = .38$ $\mathbb{P}(\text{not acccident prone}|A) = \frac{0.7 \cdot .2}{.38} = \frac{7}{19}$

(5) A pair of fair dice is rolled. What is the expected value of the difference between the higher and the lower value?

Answer: $\frac{35}{18}$

(6) Suppose X is a Poisson random variable with $P(X=2)/P(X=4) = \frac{1}{3}$. What is λ ?

Answer: 6

(7) Suppose X has density

$$f(x) = \begin{cases} \frac{a}{x^2} & \text{if } 1 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

Find a, $\mathbb{E}X$, $\mathbb{E}X^2$, $\operatorname{Var}X$.

Answer: $a = 2, \mathbb{E}X = 2 \ln 2\mathbb{E}X^2 = 2, \text{ Var}X = 2 - 4(\ln(2))^2$

(8) Let $Z \in \mathcal{N}(0, 1)$, that is, a standard normal random variable. Find the cumulative distribution function and the probability density function for $X = Z^2$.

Answer: if x > 0 then the functions are $F(x) = 2\Phi(\sqrt{x}) - 1$ and $f(x) = \exp(-x/2)/\sqrt{2\pi x}$, and both are 0 otherwise

(9) Suppose the dice is rolled 720 times. Use the normal approximation to estimate the probability that 3 occurred exactly 123 times.

Answer: $\Phi(0.35) - \Phi(0.25) \approx 0.13683 - 0.09871 = 0.03812$

(10) Suppose X is an exponential random variable with $\mathbb{E}X = 2$. Find the conditional probability that 3 < X < 4 given that X > 2.

Answer: $e^{-1/2} - e^{-1}$

(11) Suppose that random variables X and Y are uniformly distributed in the region y > 0, x > y, x + y < 4. Find $\mathbb{P}(X < 3)$

Answer: $\mathbb{P}(X > 3) = 1/8$ by integration or geometry, and so $\mathbb{P}(X < 3) = 1 - \frac{1}{8} = \frac{7}{8}$

(12) Suppose again that random variables X and Y are uniformly distributed in the region y > 0, x > y, x + y < 4. Find $\mathbb{E}X$ and $\mathbb{E}Y$

Answer: $\mathbb{E}X = 2$ and $\mathbb{E}Y = \frac{2}{3}$

(13) Let $S_4 = X_1 + ... + X_4$ is the sum of 4 independent random variables, and each X_i is exponential with $\lambda = 3$. Find the moment generating function m(t) for S_4 . Also find m'(0) and m''(0).

Answer:
$$m(t) = \left(\frac{3}{3-t}\right)^4 \quad m'(0) = 4/3 \quad m''(0) = 20/9$$

(14) Let $S_{16} = X_1 + ... + X_{16}$ is the sum of 16 independent random variables, and each X_i is exponential with $\lambda = 3$. Use the CLT to estimate the probability that $|S_{16} - 6| < 2$.

Answer: $\Phi(2) + \Phi(1) - 1$

(15) In the situation of questions (11) and (12), find VarX and VarY

Answer:

 $VarX = 56/12 - (2)^2 = 2/3,$ $VarY = 8/12 - (2/3)^2 = 2/9,$

because

 $\int_{0}^{2} \int_{y}^{4-y} 1 dx dy = 4$ $\int_{0}^{2} \int_{y}^{4-y} x dx dy = 8$ $\int_{0}^{2} \int_{y}^{4-y} x^{2} dx dy = \frac{56}{3}$ $\int_{0}^{2} \int_{y}^{4-y} y dx dy = \frac{8}{3}$ $\int_{0}^{2} \int_{y}^{4-y} y^{2} dx dy = \frac{8}{3}$

Hint: one can find another solution by using problem (17) below.

(16) In the situation of questions (11), (12) and (15), find the correlation between X and Y. Are X and Y independent? Explain.

Answer: $\rho(X,Y) = (16/12 - 2(2/3))/\sqrt{(56/12 - (2)^2)(8/12 - (2/3)^2)} = 0$ because $\int_0^2 \int_y^{4-y} xy dx dy = \frac{16}{3}$. There is another solution that does not use integrals but the left-to-right symmetry. No, X and Y not independent because the region of integration has a triangular shape.

(17) In the situation of questions (11), (12), (15) and (16), find the marginal densities of X and Y.

$$Answer: f_X(x) = \begin{cases} \frac{x}{4} & \text{if } 0 \le x \le 2\\ \frac{4-x}{4} & \text{if } 2 \le x \le 4 \text{ and } f_Y(y) = \begin{cases} \frac{2-y}{2} & \text{if } 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$$

(18) In the situation of questions (11), (12), (15), (16) and (17), find the conditional densities f(X|Y), f(Y|X).

$$Answer: f(X|Y) = \begin{cases} \frac{1}{4-2y} & \text{if } 0 \le y \le 2, \ y < x < 4-y \\ 0 & \text{otherwise} \end{cases}$$
$$f(Y|X) = \begin{cases} \frac{1}{x} & \text{if } 0 \le x \le 2, 0 < y < x \\ \frac{1}{4-x} & \text{if } 2 \le x \le 4, 0 < y < 4-x \\ 0 & \text{otherwise} \end{cases}$$

Hint: this can be obtained without integration.

(19) In the situation of questions (11), (12), (15), (16), (17) and (18), find the conditional expectations $\mathbb{E}(X|Y)$ and $\mathbb{E}(Y|X)$.

$$Answer: f(X|Y) = \begin{cases} 2 & \text{if } 0 \le y \le 2, \ y < x < 4 - y \\ 0 & \text{otherwise} \end{cases}$$
$$f(Y|X) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x \le 2, 0 < y < x \\ \frac{4 - x}{2} & \text{if } 2 \le x \le 4, 0 < y < 4 - x \\ 0 & \text{otherwise} \end{cases}$$

Hint: this can be obtained without integration using either geometry or the table.

(20) In the situation of questions (11), (12), (15), (16), (17), (18) and (19), find the conditional variances $\operatorname{Var}(X|Y)$ and $\operatorname{Var}(Y|X)$.

$$Answer: \operatorname{Var}(X|Y) = \begin{cases} \frac{(4-2y)^2}{12} & \text{if } 0 \le y \le 2, \ y < x < 4-y \\ 0 & \text{otherwise} \end{cases}$$
$$\operatorname{Var}(Y|X) = \begin{cases} \frac{x^2}{12} & \text{if } 0 \le x \le 2, 0 < y < x \\ \frac{(4-x)^2}{12} & \text{if } 2 \le x \le 4, 0 < y < 4-x \\ 0 & \text{otherwise} \end{cases}$$

Hint: this can be obtained without integration using the table.

(21) Suppose $\mathbb{E}X = \mu$, $\operatorname{Var}X = \sigma^2$ and *a* is a number. Find expression for $\mathbb{E}(X - a)^2$ that uses only μ, σ^2, a and numbers. For which *a* the expectation $\mathbb{E}(X - a)^2$ attains its minimal value, and what is this value?

Answer: $\mathbb{E}(X-a)^2 = \mathbb{E}(X-\mu+\mu-a)^2 = \mathbb{E}(X-\mu)^2 + 2\mathbb{E}(X-\mu)(\mu-a) + \mathbb{E}(\mu-a)^2 = \sigma^2 + (\mu-a)^2$ The minimal value is σ^2 when $a = \mu$.