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Introduction

Motivation

@ Long term goals:

o understanding magnetic properties of fractal structures
(partially based on experimental physics) [Akkermans, Geim,
Peeters et al]

e understanding spaces appearing in quantum gravity
(partially based on theoretical physics and numerical experiments)
[Loll, Reuter et al]
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Non-quantized penetration of
magnetic field in the vortex
state of superconductors
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§ Department of Physics, University of Antwerpen (UIA), B-2610 Antwerpen,
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I Institute of Theoretical and Applied Mechanics, 630090 Novosibirsk, Russia

As first pointed out by Bardeen and Ginzburg in the early sixties"?,
the amount of magnetic flux carried by vortices in super-
conducting materials depends on their distance from the sample
edge, and can be smaller than one flux quantum, ¢, = h/2e (where
h is Planck’s constant and e is the electronic charge). In bulk
superconductors, this reduction of flux becomes negligible at sub-
micrometre distances from the edge, but in thin films the effect
may survive much farther into the material>*. But the effect has
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Superconducting disk with magnetic coating: Re-entrant Meissner
phase, novel critical and vortex phenomena

M. V. MILOSEVIG® | M. T. I. RAKIB and F. M. PEETERS(®)
Departement Fysica, Universiteit Antwerpen - Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

received 28 September 2006; accepted in final form 22 November 2006
published online 22 January 2007

PACS 74.78.Na — Mesoscopic and nanoscale systems
PACS 74.25.0p — Mixed state, critical fields, and surface sheaths

Abstract — Within the Ginzburg-Landau formalism, we study the mixed state of a superconduct-
ing disk surrounded by a magnetic ring. The stray field of the magnet, concentrated at the rim of
the superconducting disk, favors ring-like arrangement of induced vortices, to the point that even
a single vortex state exhibits asymmetry. A novel route for the destruction of superconductivity
leave the sample,

and are replaced by a re-entered Meissner phase with a full depression of the order-parameter
at the sample edge; subsequently, superconductivity is then gradually suppressed from the edge
inwards, contrary to the well-k surface s @ . When exposed to an additional
homogencous magnetic field, we find a field-polarity-dependent vortex structure in our sample
—for all vorticities, only giant- or multi-vortex states are found for given polarity of the
external field. In large samples, the number of vortex shells and number of fluz quanta in each of
them can be controlled by the parameters of the magnetic coating.

Copyright © EPLA, 2007
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Novel vortex phenomena in a superconducting disk with ic coating

M=10.0H,, M=10.7H,,

(b) © 0 ®

44 2 0 2 44 2 0 2 4

x/E x/&

Fig. 2: The free energy of the states with different vorticity L as a function of the magnetization of the magnetic coating. Insets
show the Cooper-pair density contourplots of the corresponding states. (a-c) Superconducting phase and (d-f) |4 i
plots, illustrate simultaneous vortex exit and suppression of superconductivity at the rim of the superconducting disk for high
magnetization.
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In our theoretical treatment of this system, we use the
non-linear Ginzburg-Landau (GL) formalism, combined
with Neumann boundary conditions (zero current perpe-
trating the boundary). To investigate the superconduct-
ing state of a sample with volume V', we minimize, with
respect to the order parameter 1, the GL free energy

= [ 5 (109 = A= Ao - P + 1ot
©)
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Minimization of eq. (2) leads to equations for the order
parameter and superconducting current

(—iV — Ay =1 - [y*)p, (3)
7=SWVy) - ¢4, (4)

which we solve following a numerical approach proposed
by Schweigert et al. (see ref. [2]) on a uniform Cartesian
grid with typically 10 points/¢ in each direction. We then
start from randomly generated initial distribution of ¥,
increase/decrease the magnetization of the magnet or
change the value of the applied external field, and let
eq. (3) relax to its steady-state solution. In addition, we
always recalculate the vortex structure starting from the
pure Meissner state!(y)=1) or the normal state (1)~ 0)
as initial condition. All stable states are then collected
and their energies are compared to find the ground state
configuration.
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M. V. Milogevi¢ et al.
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Fig. 3: Free energy diagram for a large superconducting disk with thin magnetic coating. Insets show the |¢/[*-density plots of

distinct vortex states.
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Fig. 4: (a) Free energy of a superconducting disk with magnetic coating as a function of applied homogeneous magnetic field.
Insets show the Cooper-pair density plots for indicated states. (b) Same as (a), but for demagnetized coating. In (b), dashed
lines denote multi-vortex and solid lines giant-vortex configurations.
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M M=8H,

L-53 (3,9,15,26) L=53 (4,11,16,22)

Fig. 5: The |y|*density plots illustrating the arrangement of vortex shells in a large superconducting disk for L =53 and
L =60, with magnetic coating with (a,c) negative (M = —8H.2), or (b,d) positive (M = 8H.2) magnetization.

M. Hinz (Bielefeld), M.R. Lancia and P. Vernole (Rome), A Rozanova-Pierrat (Paris-Saclay), A, Teplyaev (UConn) ICIAM 2019

Dirichlet forms and vector analysis on fractal spaces



Introduction

GEOMETRICAL DESCRIPTION OF VORTICES IN
GINZBURG-LANDAU BILLIARDS

E. AKKERMANS

vine de Physique des Solides
TMS, 91405 Orsay Cedes,
France
and
Physics Dept. Technion, farmel
Insiitiie of Technology, Haifa 22000,
Farael
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4.2 The Bogomol'nyi identities

For the special value k = %, the equations for ¥ and A can be reduced
to first order differential equations. This special point was first used by
Sarma [41] in his discussion of type-I vs. type-II superconductors and then
identified by Bogomol’nyi [40] in the more general context of stability and
integrability of classical solutions of some quantum field theories. This
special point is also called a duality point. We first review some properties of
the Ginzburg-Landau free energy at the duality point. We use the following
identity true for two dimensional systems

(V= id)p[? = Dy + V x 7+ Blyp|® (64)
where 7= Im(y* V) — |4 is the current density and the operator D is

defined as D = 0, + 19y — i(A; + iAy). This relation is a relative of the
Weitzenbdck formula (61). At the duality point x = % the expression (63)

for F can be rewritten using (64) as

= (%|B71+Wllz|2+|Dw|2> +f Gedd o)
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@ Ginzburg/Landau: replace linear egs. in infinite dimensions by
nonlinear in finite dimensions

@ Geim et al: can confine system to bounded domain
@ topological behaviour of solutions matter

Can we study related questions, theoretically and/or numerically,
in fractal snowflake domains ?

M. Hinz (Bielefeld), M.R. Lancia and P. Vernole (Rome), A Rozanova-Pierrat (Paris-Saclay), A, Teplyaev (UConn) ICIAM 2019

Dirichlet forms and vector analysis on fractal spaces



Introduction Ventsell problem Tangential gradients Cauchy problem Lipschitz core Outlook

Some recent related math papers (vector analysis):

@ M. Hinz, M. Rockner, A. Teplyaev, Veector analysis for local
Dirichlet forms and quasilinear PDE and SPDE on fractals, Stoch.
Proc. Appl. 123 (2013), 4373—4406.

@ M. Hinz, A. Teplyaev, Dirac and magnetic Schrédinger operators
on fractals, J. Funct. Anal. 265 (2013), 2830—-2854.

@ M. Hinz, A. Teplyaev, Local Dirichlet forms, Hodge theory, and the
Navier-Stokes equations on topologically one-dimensional
fractals, Trans. Amer. Math. Soc. 367 (2015), 1347—1380.

@ M. Hinz, L. Rogers, Magnetic fields on resistance spaces, to
appear in J. Fractal Geometry (2015+).

@ M. Hinz, Magnetic energies and Feynman-Kac-Ité formulas for

symmetric Markov processes, Stoch. Anal. Appl. 33 (6) (2015),
1020-1049.
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@ M. Hinz, Sup-norm-closable bilinear forms and Lagrangians, to
appear in Ann. Mat. Pura Appl. (2015+).
Review paper:
@ M. Hinz, A. Teplyaev, Finite energy coordinates and vector

analysis on fractals, Progress in Probab. 70, Fractal Geometry
and Stochastics V, Springer, 2015, pp. 209-227.

Related Physics papers:

@ E. Akkermans, G. Dunne, A. T. Physical Consequences of
Complex Dimensions of Fractals, Europhys. Lett. 88, 40007
(2009).

@ E. Akkermans, G. Dunne, A. T. Thermodynamics of photons on
fractals, Phys. Rev. Lett. 105(23):230407, 2010.
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Language: Dirichlet forms

X loc. compact sep. metric space, m finite Radon measure on X,

dense support, (£, F) be a regular symmetric Dirichlet form on
Lo(X, m) with core C := F N Cy(X).

Endowed with the norm ||| 5, := £(f)"/2 + supy |f| the space C is
algebra
£(f9)'2 < Iz llgllz,. f.g€C.

Can define a first order derivation 9 from algebra C into a Hilbert space

H of L?-vector fields (or 1-forms) (Cipriani/Sauvageot 03 and many
related earlier papers)
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Examples:

(i) Dirichlet forms on Euclidean domains. Let X = Q2 be a domain in
R"and &(f,9) = [, VIVgdx, f,ge H}(Q).
(€, H1()) is a local regular Dirichlet form on Ly(<2),
H= LQ(Q, R™) and 9f = Vf in L2-sense.

(i) Dirichlet forms on Riemannian manifolds. Let X = M be a
compact Riemannian manifold and

E(f,9) = /M<Vf, V@) dvol, f,ge H'(M)

where dvol is the Riemannian volume measure. Then
H = L?(M, TM, dvol) and df = Vf is usual gradient in L2-sense.

(iii) Dirichlet forms induced by resistance forms on self-similar p.c.f.
fractals (gradients with respect to Kusuoka-Kigami measures).
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This language allows study of equations involving vector terms:

div(a(Vu)) = f

Au+b(Vu)=f

.ou . . 2
IS = (—=iV = A)u+ W.

QU4 (u-V)u—Au+Vp=0,
divu =0,

Some examples of results:
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Cauchy problem

ga,V(ﬂ g) = <(—/8 - a)f? (_Ia - a)g>’H + <fva g>L2(X7m) ) fag € ]:(Ca

Theorem (H./T. ’13)
Letac Hoo and V € Lo(X, m).
(i) The quadratic form (£2Y, F¢) is closed.

(ii) The self-adjoint non-negative definite operator on Ly ¢ (X, m)
uniquely associated with (%Y, F¢) is given by

H&Y = (-9 — a)*(—id0 — a) + V.

Related Dirac operator is well defined and self-adjoint

0 —io*
D_<—i8 o)
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(Feynman-Kac-1t6 formula)

Theorem (H.15)

Suppose a € H, is real valued and v is a real valued Borel function.
For t > 0 and bounded Borel f set

PAVH(x) = Ex[e Mo @l OB g vy x e X

where || y([o,0) @ is a properly defined Stratonovich line integral.
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(Hodge theorem and Navier-Stokes equations in topo dimension 1)

Theorem (H./T.’15)

If the space X is compact, connected and topologically 1-dimensional
of arbitrarily large Hausdorff and spectral dimensions, then a 1-form
w € H is harmonic if and only if it is in (Im 8)*: divw = 0.

By the classical identity %V!u\Q = (u- V)u+ u x curlu equation (1)
becomes % + Jory(u) — Aqu+9p =0, divu=9*u=0. Therefore
any weak solution u of (1) is unique, harmonic and stationary (i.e.

ur = Ug is independent of t € [0, o)) for any divergence free initial
condition ug.
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Goals

@ General goal:
Linear and non-linear equations on rough domains and
fractals involving
o Gradient terms
o Magnetic potentials

@ Here in this talk:
Domain with fractal snowflake boundary
e Tangential derivative along boundary and pointwise interpretation
o Model problem: Parabolic Ventsell problem with drifts in interior
domain and on fractal boundary
e Lipschitz and C'-extensions of functions on the boundary

(preparation for Lipschitz coordinates and studies of magnetic
fields)
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Ventsell problem

Ventsell problem

Figure: Fractal (closed) snowflake domain Q.

@ Consider a ‘'mixed’/interacting diffusion in the interior and on the
boundary
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@ Central tool: bilinear form
Ealf,f) = / (A(X) - V(x)) - VF(x)L2(0x) + Cofaal(. )
Q

@ A bounded measurable uniformly elliptic coefficient matrix,
£? two-dim. Lebesgue,
co > 0 fixed constant,
Esa Kusuoka-Kigami Dirichlet form on snowflake boundary 02

@ &4, equipped with suitable domain, becomes Dirichlet form
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Consider the parabolic Ventsell problem
ui(t, x) — Lau(t,x) — b(x) - Vu(t, x) = f(t, x)
in (0, T] x Q

ui(t, x) — coDoqu(t, x) — baa(x)Daqu(t, x) + c(x)u(t, x)
_0u(t, x)
= W = f( t X)
in (0, T] x 02
U(O,X) = UO(X)
in Q.
(generalizes a problem of Lancia/Vernole ’14)
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Here

Lau(t,-) =div(A-Vu(t,-))

Ay Kusuoka-Kigami Laplacian on 99

c stationary scalar potential on 99, ug given initial condition
% is the co-normal derivative of u(t, -) across 02

b stationary drift vector field in Q, byq is a drift vector field on 9Q
(not necessarily related)

Dsqu(t, ) 'tangential derivative’ of u(t,-) along 00
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Energy and tangential gradients

@ Discrete energy forms on Koch curve:

0w =54 > >

PEVa(K) G~np
@ V), 'dyadic points of level n’ (images of boundary points
Vo = {0, 1} under similarity maps)
@ non-decreasing in n with non-trivial limit ¢ (u) := limp_ 5;({')(u)
@ obtain regular resistance form (£, D(Ek)) in the sense of Kigami
@ D(&k) C C(K)
@ resistance metric

_ 2
dr(p,q) := sup {W . ueD(E), Ek(u) > 0}
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Figure: Koch curve with boundary Vo = {0, 1}
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@ hunique harmonic function on K with boundary values h(0) = 0
and h(1) = 1 (coordinate function)

@ h: K — [0, 1] homeomorphism onto [0, 1]

@ with § = dimy K = 24 and quasi-distance

ds(x,y) == |x — y|°,

K is variational fractal in the sense of Mosco '97, and for any
p, q € Vih(K) with p ~, q, have

|h(p) — h(q)| = ds(p.q) = |p— qI°

M. Hinz (Bielefeld), M.R. Lancia and P. Vernole (Rome), A Rozanova-Pierrat (Paris-Saclay), A, Teplyaev (UConn) ICIAM 2019

Dirichlet forms and vector analysis on fractal spaces



Introduction Ventsell problem Tangential gradients Cauchy problem Lipschitz core Outlook

@ energy measure uy of h,

&, uh) ~ 5Ex(u,tF) = [ udn.

equals §-dim. Hausdorff measure (up to constant)
@ subspace
Sk = {Fo h:Fe c1(R)}

is dense in D(Ek)

o Ex(u) = [ F'(h(x))?uk(dx) for any u = F o hfrom Sk

@ (&k,D(Ek)) is a strongly local regular Dirichlet form on L?(K, k)
(Kigami-Kusuoka energy)
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@ Koch snowflake 992 = union of three congruent copies Kj, K> and
Ks resp. Ky, Ks and Kz of K

/KiI\ /\

N

K3 Kz _\(}/_
Figure: Using the copies Ki, K> Figure: Using the copies Ki, Ks

and Ks. and Ks.
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@ ¢; Euclidean motion that maps K; into K

o D(Epq) = {u 100 > R: ulg 07! € D(Ek), i = 1,...,6}

@ Epa(u) = &k (Ulk,) + €k, (Ulk,) + Eiy(UlKg), U € D(Eaq)-

@ identify u|x with u|k, o ¢~ 1, identify pk; with image measures of ik
and so on

@ equip 09 with measure p := px, + ik, + ik,

@ (Esq, D(Esq)) strongly local Dirichlet form on L2(0%, 1) ...
Kusuoka-Kigami energy form on 0N (see Freiberg/Lancia '04)

@ assoc. Laplacian in variational sense is

(Baal, 9 (esn)y Dicany) = ~E00(f,9), 1.9 € Do)

M. Hinz (Bielefeld), M.R. Lancia and P. Vernole (Rome), A Rozanova-Pierrat (Paris-Saclay), A, Teplyaev (UConn) ICIAM 2019

Dirichlet forms and vector analysis on fractal spaces



Tangential gradients

Set
Sasq = {UZBQ—)R:U‘Ki:F/OhiGSKI.,I':L...,G}

with Sk, similarly as before.

The space Syq is dense in D(Epq).
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Write V,(9Q) := %, V.(K;), where for any K; the set V. (K;) is 'set of
all dyadic points’ (images of bd. points).

Lemma

Let u € Spq. Then for any p € V,.(09) the limit

- : u(p) — u(q)
Doali(p) := V*(alfllgq%p lp—ql°

)

exists uniformly in p € V,(0R2). If p € Kj and u|k, = Fj o h;, then
Doqu(p) = F;(hi(p)).

Moreover, if p € K; N Kj N V,.(0Q2) and u|k, = Fj o h; then
Fi(hi(p)) = Fi(h;j(p)).

(concept of limit goes back to Mosco)
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Pointwise definition of tangential gradient of composed functions:

Definition

Given x € K; and u € Syq such that ulk, = Fjo h;, we set
Daqu(x) := Fj(hi(x)). (2)

We refer to Dyqu(x) as the tangential gradient of u along 9Q2 in x € 99.

Pointwise definition ('new’) useful for numerical schemes.
Connections/applications to research of Rozanova-Pierrat (acoustics,
heat content) and Sapoval.

The definition (2) is independent of the particular choice of h; and F;.
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Interpreted as a linear operator:

The tangential gradient Dyq defines a bounded linear operator
Dsq : Saq — L?(09, 1), more precisely, we have
HDaQquz(aQ’“) = Espq(u) forall u € Syq.

The closedness of (£sq, D(Esq)) implies:

Dsyq extends to a closed unbounded operator

Dysq : L2(0Q, 1) — L2(0K, 1) with domain D(Epq). Moreover, for any

u € D(Epqn) we have Exq(u) = HDaQquz(m ,) @nd the energy measure
vy Of u is absolutely continuous with respect to i with density

Foa(u) = (Daqu)? u-ae.
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Introduction Ventsell problem Tangential gradients Cauchy problem Lipschitz core

@ Djq version of first order derivation 0 (abstract gradient) in the
sense of Cipriani/Sauvageot '03

@ special situation here (on curve): gradients themselves are scalar
valued L?-functions
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Cauchy problem

Cauchy problem and interpretation

@ consider the function space
V(Q,0Q) := {u e H'(Q) : ulsn € D(Esq)} equipped with
(U, V)via0) = (U, V) ) + CaalUlaa; Vlea) + (Uloa; VIea) 2o,

Hilbert.
@ consider m := £?|q + y measure on Q
@ then
So(u,v) = /QVU Vv dL? + cp€sa(Ulan, V]oa)

defines Dirichlet form (&, V(Q,02)) on L2(Q, m) (Lancia ’02/'03,
Lancia/Vernole '14)
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Introduction Ventsell problem Tangential gradients Cauchy problem Lipschitz core Outlook

Assume we are given the following data:
(i) A= (aj)?_y, aj = aj bounded,

Za,,«s,§,>AZ!f, , E=(6,6)€Q

7] 1
(i) a vector field b = (by, by) € L2(Q, R?) such that

/uZ(B. b) dL? < /(VU)Zdﬁz—i—'ngquz(Q), ue V(Q,o0),
Q Q

with positive constants -y and ~» such that v/2v1 < A,
(iii) a’boundary vector field’ byq € L2(0%, 1) such that

/(‘)Q Uzbcg)ﬂ dM < 44 EBQ(U‘(?Q) + 02 ”U”iz(aﬂ,u) , Ue V(Q7 aQ)v

with positive constants ¢; and d» such that /261 < ¢y,
(iv) a continuous function ¢ on 092.
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Tangential gradients Cauchy problem Lipschitz core

Consider

E(u,v)
= /(A(x) - Vu(x)) - Vv(x)L£3(dx) — /(B(X) - Vu(x))v(x)L2(dx)
Q Q

+cooqal(u, v)— b@Q(X)DaQU(X)V(X)IU/(dX)—f—/ c(x)u(x)v(x)m(dx),
Glel Glel

u,v e V(Q,0Q).

Given o > 0 write

goz(ua V) = E(U, V) +a <U’ V>L2(§,m) ’
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Let A, b, by and c be as above. Then (€, V(Q,09)) is a closed
coercive form in the wide sense, i.e. there is some o > 0 such that
u— &, (u, u) defines a positive definite closed quadratic form on
L2(Q, m) with domain V(Q,0Q) and

Ear1(U, V)] < K Ear1(U)V2E001(V)V2, u,v € V(Q,00),

with a universal constant K > 0.
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@ (&, V(Q,00)) generates an analytic semigroup (T¢)>o on
L2(Q, m) with generator (A, D(A))

Given f: [0, T] — L2(Q, m) and up € L?(Q, m), consider abstract
Cauchy problem
WO — Au(t) + f(t), 0<t<T,
(0) = Uo

in L2(Q, m).
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u € C([0, T], L2(Q, m)) classical solution if
u e C'((0, T], L2(©2, m)) N C((0, T], D(A)) and u satisfies (3).

Suppose 0 < 6 < 1 and f € C%((0, T], L3(Q, m)) and that assumptions
above are satisfied. Then (3) has a unique classical solution u, given

by

t
u(t) = Tiuo +/ Ti_sf(s)ds, 0<t<T,.
0
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Interpretation of abstract Cauchy solution:

@ consider
V(@) ={geH'(@): Lage 2D},

where L 4g = div(AVg), with norm

191lv(q) = [ILagll2(0) + VIl 2@ r2) + 191l 2(0) -

@ similarly as in Lancia ‘02 and Lancia/Vernole '06, for any g € V(Q)
we can define a distribution |, € (H'(Q))’ by

lg(v) ::/(A-Vg)-Vvd£2+/ vLag dL?, v e H'(Q).
Q Q
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@ can view each /g as distribution 72 in (B5/3(99))" and write

(9

_ 1
oy V1o2) 2 ony a0 = (V) VEH(Q)

(dual pairing)

@ can show classical solution u is in C((0, T], V(2))

@ by embedding of D(Eyq) into B /2(69), may view ;- (t) as an
element of (D(Esq))’
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Ventsell problem Tangential gradients Cauchy problem Lipschitz core

Arrive at rigorous version of parabolic Ventsell problem:
up(u) — Lau(t) — b- Vu(t) = £(t)
in L2(Q), t € (0, T,

_ou
ony

ur(t) — coDaqu(t)|an — baaDaau(t)|aq + cu(t) = (t) + (1)

in (D(Ean))’, t € (0, T],
u(0) = up

in L2(Q, m).
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Lipschitz core

A core of Lipschitz functions

@ Difficulty for vector analysis on Q: Q no Lipschitz domain
@ |dea here: consider intrinsic Lipschitz functions on 02:

ngQ(X,y) =
sup {u(x) — u(y) : u € D(Esq) with Tpa(u) <1 p-a.e.},

X,y € 0Q.
Here po(u) = (Dsqu)? energy density of u € D(Exq).
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Introduction Ventsell problem Tangential gradients Cauchy problem Lipschitz core Outlook

Locally, the intrinsic metric on 02 can be expressed via coordinates.

For any i and any x, y € K; we have de,o (X, ¥) = |hi(x) = hi(y)|-

Note that also dr(x, y) = ds,, (X, ¥), X, ¥ € Ki.

The corollary allows for the following extension principle.

Any Esq-intrinsically Lipschitz function on 022 has an
Euclidean-Lipschitz extension to Q.
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Recall the notation
Eo(u,v) = [ Vu- Vv dL? + cofin(tlon. Vien), s € V(8,09)
Q

u,v e V(Q,00).

Corollary

(i) The Dirichlet form &y has a core consisting of functions in C(Q)
whose restriction to Q is in C'(Q), and whose restriction to 9 is a
Esq-intrinsic C'-function. For a core function u the gradients Vu
and Dyqu are well defined pointwise in Q and on 052, respectively.

(iiy There are two coordinate functions Y1.¥2 which are contained in
the core and separate the points of Q.
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@ For a core function u have Dyqu continuous on 02 and Vu
continuous on £, and usual calculus rules.

@ Vu not necessarily continuous on Q, a typical function in
Euclidean C'(Q) is not in the domain of €.

@ Can be used to obtain a coordinate representation for the
gradients.
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Have two ’constructios / proofs’ of the Theorem, suitable to create
numerical schemes. Assume that Q2 is embedded in C and inscribed in
the circle of radius v/3

@ the six most outward points of Q are v/3e*7/3+i7/6 'k — 0, 1,...,5;
@ the inscribed circle is the unit circle

@ the six most inward points of 9Q are the 6th roots of unity e7/3,
k=0,1,..,5

@ most left and right most inward points of 9Q are —1,1 € C
respectively

Slight change of notation: now points p and g from V,, {(0Q2) that are
neighbors, p ~,.1 g, have Euclidean distance 37"
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Introduction Ventsell problem Tangential gradients Cauchy problem

Lipschitz core Outlook

Assume f be an Eyq-intrinsically Lipschitz on 952, like to construct a
Euclidean-Lipschitz extension g of f to €,.

Use natural “approximate” triangulations of .

First method is reminiscent of Lapidus/Pearse '06 and Evans ’12,’12

and uses weakly self-similar triangulation, which is nicely separated
from the boundary.
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Consider lattice L, = 3 "Z{e*"/3|k = 0,1,...,5}. Foreach x € L,NQ
there are finitely many points of L, N 9Q2 = V,,,1(09) that closest to x
On L, N Q we obtain a function g, by defining gn(x) to be the average
of f at these points.

Assume that points of each lattice L, are the vertices of closed
equilateral triangles T, ,, of sides 37", and so each lattice L, defines a
triangulation of R? = Uy, Ty, into such triangles Ty m.

Define Tn := Up.1, . cq Tn,m as the union of triangles T, , that lie
inside .

Tn» compact set contained in Q, and 7, is separated from 99Q. Denote
boundary of 7, by 975.
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Figure: The set 77 C Q, triangulated by triangles of side length %
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Figure: The set 7, C Q, with 77 C 7> triangulated by triangles of side length %
and 72 \ 7; triangulated by triangles of side length %.
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From the functions g, on L, N Q now inductively define g:
@ on 7; define g as piece-wise linear interpolation of g on the
triangulation by triangles Ty , C T3.
@ extend g from 7 to 75 using piece-wise linear interpolation of g,
on the triangles T, ,, contained in 7> but not in 7.

o if g is already defined on 7,_4, we extend it to 7, using piece-wise
linear interpolation of g, on the triangles T, » contained in 7, but
not in 7p_+
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Introduction Ventsell problem

Tangential gradients Cauchy problem Lipschitz core

To show g is Lipschitz use:
For any p € V,(092) we have

Le,o(f)>  sup M:(A')n sup 1P —7la)|

GeVa(0Q).gonp Y200 (P, Q) 3/ qeva(0Q).g~p 1P —4dl

)

where Lg,,(f) denotes the Eyq-intrinsic Lipschitz constant of £.
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ntsell problem Tangential gradients

Introduction

Figure: Chain of 8 consecutive points from V,,1(9€) that contains all points
considered when computing the values g,(x) and g,(x’) for neighbours x and

x" on the shell 87;.
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Second method of construction / proof: weakly self-similar
triangulation which is not nicely separated from the boundary 0f2.
@ define g(0) to be the average of f at the 6th roots of unity e*7/3,
k=0,1,..,5
@ at each 6th root of unity e*™/3, k = 0,1, ...,5, define
g(eikﬂ/B) _ f(eikw/S)
@ interpolate g linearly in each unit equilateral triangle with vertices
0, ek/3  gilk+1)m/3
This defines g in the regular closed convex unit hexagon Q4 which is
the convex span of the 6th roots of unity.
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Figure: The triangulated hexagon Q;.
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@ Q\ Q consists of six disjoint isometric open sets

@ closure of each of these contains a regular closed convex
hexagon with sides % On the joint facet with Q4 the function g is
already defined (and on incident vertices)

@ remaining four vertices of this hexagon lie on 92, and so we
define g(x) = f(x) at these vertices

@ define g at center of hexagon as the average at the vertices

@ interpolate g linearly in each of these triangle
Have defined g in the closed set which is the union of the unit regular
hexagon Q4 and the six adjacent closed hexagons with sides % denote
this union by Q.
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@ Q\ Q, consists of 30 open components of two shapes:

@ 18 components are % in size in comparison to the components
considered before

@ 12 component are of the same scale, but have only one fractal
side

@ closure of each of these 30 components has an inscribed regular
closed convex hexagon with sides %
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Figure: The triangulated set Q.
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Outlook

Generalization

Assume Q c R? domain with boundary 9Q homeo to circle.

Assume that locally R = R(x, y) is a (geodesic) distance along the
boundary, assume that locally

R(x,y) <clx —y|.

(prevents near-intersections)
Assume that Dirichlet form £ on interior Q satisfies £(f) < ¢ [|f]| ;-
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Consider resistance form £yq on 02 associated with R.

The form £ + Eyq is closable on a Lipschitz core, closure is Dirichlet
form on Q (with sum of measures).

Any R-Lipschitz function on 022 has an Euclidean-Lipschitz extension
to Q.

Do no longer need boundary to be d-set / self-similar (usual trace
results omitted).
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Introduction Ventsell problem Tangential gradients Cauchy problem

Can again define tangential derivative, now by

Dyaf(x) := }@XW

(or with other sign, depending on orientation)

Example:
Assume 9f2 has Hausdorff-dim. §, then set

R(x.y) = H(Ix,Y]).

where [x, y] is the piece of 9Q joining two points x and y and H° §-dim.
Hausdorff measure on 02 (parametrization by Hausdorff measure).
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Outlook

Research in progress

@ Mixed boundary valued problem for linear and nonlinear
wave equations in domains with fractal boundaries
Adrien Dekkers, Anna Rozanova-Pierrat, A.T.

@ Fractal shape optimization in linear acoustics,

Michael Hinz, Anna Rozanova-Pierrat, and A.T.

M. Hinz (Bielefeld), M.R. Lancia and P. Vernole (Rome), A Rozanova-Pierrat (Paris-Saclay), A, Teplyaev (UConn) ICIAM 2019

Dirichlet forms and vector analysis on fractal spaces



DISCRETIZATION OF THE KOCH SNOWFLAKE DOMAIN WITH BOUNDARY AND
INTERIOR ENERGIES
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ABSTRACT. We show how to discretize the energy form on the Koch snowflake domain so that both the fractal
boundary and the Euclidean interior can support positive energy. We compute eigenvalues and eigenfunctions,
and demonstrate the high energy localization of the eigenfunctions on the boundary, following a modified
Filoche-Mayboroda arguments.

CONTENTS
1. Introduction 2
2. Koch Snowflake Domain 4
3. Inductive mesh construction and the discrete energy forms 7
3.1. The discrete Laplacian 10
4. Numerical Results 10
4.1. Code Implementation and Algorithm 10
4.2. Eigenvectors and Eigenvalues 12
5. Landscape Mapping: A Filoche-Mayboroda Argument 21

References 27



Our work is part of the long term study that aims to provide robust computational tools to address,
in a fractal setting, a number of linear and nonlinear problems arising from physics [GDG00, BCP04,
AM99, Akk13, Dun12, ADT10]. The physics problems involving magnetic fields and vector equations are
particularly challenging on fractal spaces. Also, the discretization is excepted to be essential to study
quantum walks [ABM10, Ord83, APSS12, ADZ93, Kem03]. On the mathematical side, our work is related
to [AST06, AST07, HKM18, CAV14, CLV*™18 BCH*17,RT10,HR16, HT13,SST13, ADS13,FS12]. Our paper
follows results on diffusion problems involving fractal membranes [Lan02, CL14,1.V14]. Further investiga-
tions have been addressed in a series of papers, see for instance [FLV95, Lap91,L.P95,SW19]. We also study a
discretized version of the eigenvalue problem with a zero-Dirichlet boundary condition. We compare our com-
putations for the Dirichlet Laplacian mainly to the results in Lapidus et. al. Snowflake harmonics [LNRG96].
Physical experiments on mechanical vibrations of fractal drums motivated Lapidus work.

In particular, we follow [HLTV18] where Dirichlet forms on the Koch snowflake domain were investigated.
They represent a central tool in this paper and we consider the following concrete version for the computations,

(1.1) éa(u) = /Q(Vu)2d£2 + gag(ubg),

together with a suitable domain of definition, where £2 is the usual Lebesgue measure on R? and &g denotes
the Kusuoka-Kigami Dirichlet form on the Koch snowflake boundary 0f2.

We use a graph (triangular grid) to approximate the Koch snowflake domain and define a corresponding
sequence of graph energies {&, },en to approximate & in 1.1 in a sense explained in section 2. Then we
identify a discrete Laplcian as the generator of &, and denote it by L,. The Dirichlet Laplacian is obtained
by deleting the rows and columns in L,, corresponding to boundary vertices.



FIGURE 1. Mesh construction through scaled equilateral triangles.
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FIGURE 2. Algorithm to generate the vertices of the graph I',
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FIGURE 3. Eigenvectors of L,, (left) compared with Dirichlet eigenvectors (right). (a) 1st eigen-
vector of L,, eigenvalue 0. (b) 1st Dirichlet eigenvector, eigenvalue 118.8. (c) 2nd eigenvector
of L,, eigenvalue 15.1. (d) 2nd Dirichlet eigenvector, eigenvalue 294.5. (e) 4th eigenvector of
L, eigenvalue 48.1. (f) 4th Dirichlet eigenvector, eigenvalue 499.8.



FIGURE 4. Eigenvector of L, (left) compared with Dirichlet eigenvectors (right). (a) 34th
eigenvector of L, eigenvalue 1098.6. (b) 13th Dirichlet eigenvector, eigenvalue 1084.6. (Level
4 graph approximation)



FI1GURE 5. Contour Plots of the Eigenvectors of L,, corresponding to eigenvalues A: (a) 4th
eigenvector, A = 48.1. (b) 5th eigenvector, A = 48.1. (c) 6th eigenvector, A = 85.1. (d) 8th
eigenvector A = 125.4. (e) 1153rd eigenvector A = 49965.7. (f) 1157th eigenvector A = 50156.6.
(g) 1161st eigenvector, A = 50188.8 and (h) 1162nd eigenvector, A = 50188.83. Blue regions
indicate the values of an eigenvector in (—e¢,¢€), red regions in (¢,00) and green regions in
(—o0, —¢€), where € = 0.01. (Level 4 graph approximation)



5000;
4000;
3000;
2000;

1000 |

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100000 200000 300000 400000 500000

—

Ficure 6. (Upper) Eigenvalue counting functions of Dirichlet Laplacian (orange) and L,
(blue). (Lower) Log-Log plot of the eigenvalue counting functions of Dirichlet Laplacian (or-
ange) and L,, (blue) (Level 4 graph approximation).



FIGURE 7. (a) The 5,028th eigenvector of L,,, A = 118038.02. (b) The last Dirichlet eigenvec-
tor, A = 118039.37. The oval-shaped graph is due to a high oscillation of both eigenvectors



FIGURE 8. The last L, eigenvector, A = 524999.69. The graph splits into two parts, above
and below the Koch snowflake domain due to a high oscillation (Level 4 graph approximation).



FIGURE 9. L, eigenvectors localization with eigenvalues A: (a) 5030th eigenvector, A\ =
118048.66. (b) 5031th eigenvector, A = 119678.65. (c) 5032th eigenvector, A = 119678.65.
(d) 5033th eigenvector, A = 121460.72. (e) 5100th eigenvector, A = 185367.41. (f) 5200th
eigenvector, A = 291364.38. (g) 5300th eigenvector, A = 392584.97. (h) 5557th eigenvector,
A = 524999.69. Blue regions indicate the values of an eigenvector in (—¢,¢€), red regions in
(€,00) and green regions in (—oo, —e), where € = 0.01 (Level 4 graph approximation).
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FiGURE 10. The high frequency landscape vector attains just the following two values the
boundary vertices 527360 and 524288. It is constant on the interior vertices with the value

157464. (Level 4 graph approximation)
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