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Welcome!

Planning has begun for Fractals 7 (June 9-13, 2020). The purpose of this conference, held every three years, is to bring together
mathematicians who are already working in the area of analysis and probability on fractals with students and researchers from related
areas. Information will be posted here as it becomes available.

Financial support will be provided to a limited number of participants to cover the cost of housing in Comell single dormitory rooms and
partially support other travel expenses. Students and junior researchers from underrepresented groups in STEM are particularly
encouraged to apply for travel funding. Well-established researchers are encouraged to use their own travel funding; the NSF expects
that most funds will be expended on otherwise unfunded mathematicians.

Registration details will be publicized once available.

All general inquiries can be sent to: fractals_math@cornell.edu
Conference Organizers:

o Robert Strichartz (chair), Cornell University
o Patricia Alonso Ruiz, Texas A&M University
o Michael Hinz, Bielefeld University

o Luke Rogers, University of Connecticut

o Alexander Teplyaev, University of Connecticut



Plan of the talk:

Introduction and examples of fractals

Existence, uniqueness, heat kernel estimates
F-invariant Dirichlet forms

Selected results: spectral analysis

Open problems and further directions
Introduction
Classical Curl
Sierpinski carpets
Non-closable curl
Generalization

Canonical diffusions on the pattern spaces of aperiodic Delone sets
(Patricia Alonso-Ruiz, Michael Hinz, Rodrigo Trevino, T.)

BV and Besov spaces on fractals with Dirichlet forms
(Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke Rogers,
Nages Shanmugalingam, T.)



The basilica Julia set, the Julia set of 22 — 1 and the limit set of the
basilica group of exponential growth (Grigorchuk, Zuk, Bartholdi,
Virdg, Nekrashevych, Kaimanovich, Nagnibeda et al.).



Asymptotic aspects of Schreier graphs and Hanoi Towers groups
Rostislav Grigorchuk !, Zoran Sunik
Department of Mathematics, Texas AEM University, MS-3368, College Station, TX, 77843-3368, USA

Received 23 January, 2006; accepted after revision +-+-+-+-+

Presented by Etienne Ghys

Abstract

‘We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier
graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since
they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite
this article: R. Grigorchuk, Z. Sunik, C. R. Acad. Sci. Paris, Ser. I 344 (2006).

Figure 1. The automaton generating H*) and the Schreier graph of H®) at level 3 / L’automate engendrant H*®) et le
graphe de Schreier de H®) au niveau 3
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Francois Englert

From Wikipedia, the free encyclopedia

Frangois Baron Englert (French: [dgle]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of'the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,

C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.l*] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,

Francois Englert

Frangois Englert in Israel, 2007



Nuclear Physics B280 [FS 18] (1987) 147-180
North-Holland, Amsterdam

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES

F. ENGLERT, J.-M. FRERE! and M. ROOMAN?
Physique Théorique, C.P. 225, Université Libre de Bruxelles, 1050 Brussels, Belgium

Ph. SPINDEL

Faculté des Sciences, Université de 'Etat a Mons, 7000 Mons, Belgium

Received 19 February 1986

We take a model of foamy space-time structure described by self-similar fractals. We study
the propagation of a scalar field on such a background and we show that for almost any initial
conditions the renormalization group equations lead to an effective highly symmetric metric at
large scale.
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Fig. 1. The first two iterations
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = — B/(B + 1) separates the domain of euclidean

metrics from minkowskian metrics and corresponds - except at the origin ~ to 1-dimensional metrics. M,, M,, M; denote unstable minkowskian

fixed geometries while E corresponds to the stable cuclidean fixed point. The unstable fixed points 05, 0, and 0; associated to 0-dimensional

geometries are located at the origin and at infinity on the (a., B) coordinates axis. The six straight lines are subsets invariant with respect to the

recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations arc drawn. Note that for one of
them the 10th point (o = —56.4, B = —52.5) is outside the frame of the figure.
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the euclidean fixed point. Vertices are labelled according to fig. 4.
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Figure 6.4. Geometric interpretation of Proposition 6.1.



PRL 95, 171301 (2005)
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The Spectral Dimension of the Universe is Scale Dependent

1. Ambjgrm, " . Juriewicz, " and R. Loll**

"The Niels Bokr Insite, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark
"Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University,
Reymonta 4, PL 30-059 Krakow, Poland
Snstitute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3384 CE Utrecht, The Netherlands
(Received 13 May 2005; published 20 October 2005)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing” at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOI 10.1103/PhysRevLett93.171301

Quantum gravity as an ulfraviolet regulator!—A shared
hope of researchers in otherwise disparate approaches to
quantum gravity is that the microstructure of space and
time may provide  physical regulator for the ultraviolet
infiniies enconntered in nertirhative anantim field theory

PACS numbers: 04.60.Gw, 04.60Nc, 98.80.Qc

tral dimension, a diffeomorphism-invariant quantity ob-
tained from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-
curacy, it is equal to four, in agreement with earlier mea-
airements of the larne-senle dimensionality hased on the



other hand, the “‘short-distance spectral dimension,” ob-
tained by extrapolating Eq. (12) to o — 0 is given by

Ds(o = 0) = 1.80 * 0.25, (15)

and thus is compatible with the integer value two.
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Fractal space-times under the microscope:
a renormalization group view on Monte Carlo data

Martin Reuter and Frank Saueressig
Institute of Physics, University of Mainz,
Staudingerweg 7, D-55099 Mainz, Germany
E-mail: reuter@thep.physik.uni-mainz.de,
saueressig@thep.physik.uni-mainz.de

ABSTRACT: The emergence of fractal features in the microscopic structure of space-time
is a common theme in many approaches to quantum gravity. In this work we carry out a
detailed renormalization group study of the spectral dimension dy and walk dimension d,,
associated with the effective space-times of asymptotically safe Quantum Einstein Grav-
ity (QEG). We discover three scaling regimes where these generalized dimensions are ap-
proximately constant for an extended range of length scales: a classical regime where
dy = d,d,, = 2, a semi-classical regime where ds = 2d/(2+d),d,, = 2+d, and the UV-fixed
4. On the length scales covered by three-dimensional

point regime where ds = d/2,d,,
Monte Carlo simulations, the resulting spectral dimension is shown to be in very good
agreement with the data. This comparison also provides a natural explanation for the ap-
parent puzzle between the short distance behavior of the spectral dimension reported from
Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

KEYWORDS: Models of Quantum Gravity, Renormalization Group, Lattice Models of Grav-
ity, Nonperturbative Effects



Fractal space-times under the microscope:

A Renormalization Group view on Monte Carlo data

Martin Reuter and Frank Saueressig

a classical regime where d; = d,d,, = 2, a semi-classical regime where ds = 2d/(2 + d),d,, =
2+ d, and the UV-fixed point regime where ds = d/2,d,, = 4. On the length scales covered
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Norbert Wiener

From Wikipedia, the free encyclopedia

Norbert Wiener (November 26, 1894, Columbia,
Missouri — March 18, 1964, Stockholm, Sweden)
was an American mathematician.

A famous child prodigy, Wiener (pronounced
WEE-nur) later became an early studier of
stochastic and noise processes, contributing work
relevant to electronic engineering, electronic
communication, and control systems.

Wiener is wrongly regarded as the originator of
cybernetics(see $tefan Odobleja), a formalization
of the notion of feedback, with many implications
for engineering, systems control, computer
science, biology, philosophy, and the organization
of society.

Contents [hide]
1 Biography
1.1 Youth
1.2 Harvard
1.3 After the war
1.4 During and after World War |l

Norbert Wiener

November 26, 1894
Columbia, Missouri, U.S.

March 18, 1854 (aged 69)
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Andrey Kolmogorov

From Wikipedia, the free encyclopedia

Andrey Nikolaevich
Kolmogorov (Russian:
AHapéR Hukonaeewy
Konmorépoe) (25 April
1903 — 20 October 1987)
was a Soviet Russian
mathematician, preeminent
in the 20th century, who
advanced various scientific
fields, among them
probability theory, topology,
intuitionistic logic,
turbulence, classical
mechanics and
computational complexity

Andrey Kolmogorov

25 April 1903
Tambov, Impenal Russia

20 October 1987 (aged 84)
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Wactaw Sierpinski

From Wikipedia, the free encyclopedia

Waclaw Franciszek Sierpinski (Polish
pronunciation: ['vatswaf frap'tcisek
cer'plinskii]) (March 14, 1882, Warsaw
— October 21, 1969, Warsaw) was a
Polish mathematician. He was known for
outstanding contributions to set theory
(research on the axiom of choice and the
continuum hypothesis), number theory,
theory of functions and topology. He
published over 700 papers and 50 books.

Three well-known fractals are named
after him (the Sierpinski triangle, the
Sierpinski carpet and the Sierpinski
curve), as are Sierpinski numbers and
the associated Sierpinski problem.

Contents [hide]

4 CA 41

Wactaw Sierpinski

Born March 14, 1882
Warsaw, Poland

Died October 21, 1969
(aged 87)




ANALYSE MATHE'VIATIQUE. — ‘Sur une courbe dont tow! poznz est-un poznt

de ramzﬁcatzon Note (* ) de M. W. Sweremvski, présentée par M. Emile
Picard.

Le but de cetie Note est de donner un exemple d'une courbe canto-
rienne et jordanienne en méme temps, dont lout point est un point de
ramification. (Nous appelons point de ramification d’une courbe € un
point p de cette courbe, s'il existe trois continus, sous-ensembles de @,
ayant deux & deux le point p et seulement ce point commun.)

Soient T un triangle régulierdonné; A, B, Crespectivement ses sommets :
gauche, supérieur et droit. En joignant les milieux descétés du triangle T,
nous obtenons quatre nouveaux triangles réguliers (/ig. 1), dont trois, T,
T,, T, contenant respectivement les sommets A, B, C, sont situés parallé-
lement & T et le quatriéme triangle U contient le centre du triangle T3
nous exclurons tout 'intérieur du triangle U. _

Lessommets des triangles T, T, T, nousles désignerons respectivement :

(1) Séance du 1 février 1915,



Lriangies Uy, U,, U,, situés parallélement & U, dont les intérieurs seront

oo -

exclus (/ig. 2). Avec chacun des triangles T, , procédons de méme et ainsi



Fig. 3.

A\ S

d’eux se rencontrent quatre segments différents, situés entidrement sur
I’ensemble

Donc, tous les points de la courbe €, sauf peut-éire les points A, B, C,
sont ses points de ramification.

Pour obtenir une courbe dont tous les points sans exception sont ses

liig. 5. Fig. 6.

3

points de ramlﬁcauon, il suffit de lelSel un hexagone régulier en six
-
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Initial motivation

» R. Rammal and G. Toulouse, Random walks on fractal structures
and percolation clusters. J. Physique Letters 44 (1983)

» R. Rammal, Spectrum of harmonic excitations on fractals. J.
Physique 45 (1984)
» E. Domany, S. Alexander, D. Bensimon and L. Kadanoff,

Solutions to the Schrédinger equation on some fractal lattices.
Phys. Rev. B (3) 28 (1984)
» Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on

fractals. I. Quasilinear lattices. Il. Sierpifiski gaskets. Ill. Infinitely
ramified lattices. J. Phys. A 16 (1983)17 (1984)



Main early results

Sheldon Goldstein, Random walks and diffusions on fractals.
Percolation theory and ergodic theory of infinite particle systems
(Minneapolis, Minn., 1984—1985), IMA Vol. Math. Appl., 8, Springer

Summary: we investigate the asymptotic motion of a random walker,
which at time nis at X(n), on certain ‘fractal lattices’. For the
‘Sierpinski lattice’ in dimension d we show that, as L — oo, the
process Y. (t) = X([(d + 3)‘t])/2L converges in distribution to a
diffusion on the Sierpin’ski gasket, a Cantor set of Lebesgue measure
zero. The analysis is based on a simple ‘renormalization group’ type
argument, involving self-similarity and ‘decimation invariance’. In
particular,

1X(n)| ~ n,

where vy = (In2)/In(d + 3)) < 2.

Shigeo Kusuoka, A diffusion process on a fractal. Probabilistic
methods in mathematical physics (Katata/Kyoto, 1985), 1987.



v

M.T. Barlow, E.A. Perkins, Brownian motion on the Sierpinski
gasket. (1988)

M. T. Barlow, R. F. Bass, The construction of Brownian motion on
the Sierpinski carpet. Ann. Inst. Poincaré Probab. Statist. (1989)
S. Kusuoka, Dirichlet forms on fractals and products of random
matrices. (1989)

T. Lindstream, Brownian motion on nested fractals. Mem. Amer.
Math. Soc. 420, 1989.

J. Kigami, A harmonic calculus on the Sierpiniski spaces. (1989)

J. Béllissard, Renormalization group analysis and quasicrystals,
Ideas and methods in quantum and statistical physics (Oslo,
1988) Cambridge Univ. Press, 1992.

M. Fukushima and T. Shima, On a spectral analysis for the
Sierpinski gasket. (1992)

J. Kigami, Harmonic calculus on p.c.f. self-similar sets. Trans.
Amer. Math. Soc. 335 (1993)

J. Kigami and M. L. Lapidus, Wey!'s problem for the spectral
distribution of Laplacians on p.c.f. self-similar fractals. Comm.
Math. Phys. 158 (1993)
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Main classes of fractals considered

vV v v v Y

[0,1]

Sierpinski gasket

nested fractals

p.c.f. self-similar sets, possibly with various symmetries

finitely ramified self-similar sets, possibly with various
symmetries

infinitely ramified self-similar sets, with local symmetries, and
with heat kernel estimates (such as the Generalized Sierpinski
carpets)

metric measure Dirichlet spaces, possibly with heat kernel
estimates (MMD+HKE)
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Figure: Sierpinski gasket and Lindstram snowflake (nested fractals), p.c.f.,
finitely ramified)



Figure: Diamond fractals, non-p.c.f., but finitely ramified



Figure: Laakso Spaces (Ben Steinhurst), infinitely ramified



Figure: Sierpinski carpet, infinitely ramified



Existence, uniqueness, heat kernel estimates

Brownian motion:

Thiele (1880), Bachelier (1900)

Einstein (1905), Smoluchowski (1906)

Wiener (1920°), Doob, Feller, Levy, Kolmogorov (1930°),
Doeblin, Dynkin, Hunt, Ito ...

Wiener process in R" satisfies 1E|W;|2 = t and has a
Gaussian transition density:

1 X —yP?
pi(x,y) = WGXP T at

distance ~ v time

“Einstein space—time relation for Brownian motion”



De Giorgi-Nash-Moser estimates for elliptic and parabolic PDEs;

Li-Yau (1986) type estimates on a geodesically complete
Riemannian manifold with Ricci > 0:

2
pi(x,y) ~ MeXp (_cd(x;y)>

distance ~ Vv time



Gaussian:

1 X —yP?
pi(x,y) = WGXP (— 4t

Li-Yau Gaussian-type:

2
pi(x,y) ~ MeXp (_cd(x;y) )

Sub-Gaussian:

1 d(x, )%\ =
pi(x,y) ~ tdn/d XP (—c (t

distance ~ (time)d17




Brownian motion on R9: E|X; — Xp| = ct'/2.

Anomalous diffusion: E|X; — Xo| = o(t'/?), or (in regular enough
situations),
E|X; — Xo| ~ t'/%

with dy > 2.

Here dy, is the so-called walk dimension (should be called “walk
index” perhaps).

This phenomena was first observed by mathematical physicists
working in the transport properties of disordered media, such as
(critical) percolation clusters.



dw
1 d(X, y) w1
PUX,Y) ~ g exp <—c1>

tdw—1

distance ~ (time)JT«

dy = Hausdorff dimension

= dy = “walk dimension” (y=diffusion index)

')
[~}
s‘% 2=

= ds = “spectral dimension” (diffusion dimension)

First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami,
Barlow, Bass, Perkins (mid 1980'—)



Theorem (Barlow, Bass, Kumagai (2006)).

Under natural assumptions on the MMD (geodesic Metric Measure
space with a regular symmetric conservative Dirichlet form), the
sub-Gaussian heat kernel estimates are stable under rough
isometries, i.e. under maps that preserve distance and energy up to
scalar factors.

Gromov -Hausdorff + energy



Theorem. (Barlow, Bass, Kumagai, T. (1989-2010).) On any fractal
in the class of generalized Sierpinski carpets there exists a unique,
up to a scalar multiple, local regular Dirichlet form that is invariant
under the local isometries.

Therefore there there is a unique corresponding symmetric
Markov process and a unique Laplacian. Moreover, the Markov
process is Feller and its transition density satisfies sub-Gaussian heat
kernel estimates.
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of Differential geometry seem to be not applicable;
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Main difficulties:

If it is not a cube in R, then

>

>

ds < dy, dy > 2

the energy measure and the Hausdorff measure are mutually
singular;

the domain of the Laplacian is not an algebra;

if d(x, y) is the shortest path metric, then d(x, -) is not in the
domain of the Dirichlet form (not of finite energy) and so methods
of Differential geometry seem to be not applicable;

Lipschitz functions are not of finite energy;
in fact, we can not compute any functions of finite energy;

Fourier and complex analysis methods seem to be not
applicable.



The key result in the center of the proof: the classical elliptic
Harnack inequality. Any harmonic function (a local energy
minimizer) u > 0 satisfies

sup u < ¢

vy inf u
B(x,R/2) B(x,R/2)
where the constant c; is determined only by the geometry of the
generalized Sierpinski carpet.

Remark. This lemma is a hard mix of analysis (commutativity of
certain geometric projections and the Laplacian) and probability
(coupling).

Corollary. Harmonic functions are quasi-everywhere Holder
continuous.



Theorem. (Grigor'yan and Telcs, also [BBK])

On a MMD space the following are equivalent
» (VD), (EHI) and (RES)
» (VD), (EHI) and (ETE)
» (PHI)
» (HKE)
and the constants in each implication are effective.
Abbreviations: Metric Measure Dirichlet spaces, Volume Doubling,

Elliptic Harnack Inequality, Exit Time Estimates, Parabolic Harnack
Inequality, Heat Kernel Estimates.



Theorem 1. Let (A, F), (B, F) be regular local conservative
irreducible Dirichlet forms on L2(F, m) and

(1+9)A(u,u) < B(u,u) forallue F

where § > 0. Then (B—.A, F) is a regular local conservative
irreducible Dirichlet form on L2(F, m).

Technical lemma. If £ is a local regular Dirichlet form with domain
F,thenforany f € F n L*°(F) we have I'(f, f)(A) = 0, if

A = {xeF : f(x)=0} where I'(f, f) is the energy measure or the
“square field operator”

/ gdr (£, f) = 2£(t, fg) — £(, 9), g € Fo-
F



Definition
Let (£, F) be a Dirichlet form on L2(F, 11). We say that & is invariant with
respect to all the local symmetries of F (F-invariant or £ € &) if

» (D If § € Sp(F), then UsRsf € F forany f € F.

» (2)Let n > 0 and Sy, S; be any two elements of Sp,, and let ® be any

isometry of R? which maps S; onto Sp. If f € F2, then
fod c FS and S (fo ®, fo ®) = E%(f, f) where

1
8S(g7 g) = Wg(usg7 Usg)
F

and Dom(£S) = {g : g maps Sto R, Usg € F}.
> (3) E(f, f) = Yses,r) E°(Rsf, Rsf) forall f € F
Lemma

Let (A, Fy), (B, F2) € € with Fy = Fp and A > B. Then
C=(14+6)A—-—Be¢€&foranyd > 0.



> UsRsf.

mF SESn(F)

Note that © is a projection operator because ®2? = @. It is bounded
on C(F) and is an orthogonal projection on L2(F, p).

Lemma

Assume that € is a local regqular Dirichlet form on F, Ty is its
semigroup, and UsRsf € F whenever S € Sp(F) and f € F. Then
the following, for all f, g € F, are equivalent:

(a): £(f,f)= > E5(Rsf,Rsf)
SESH(F)

b): £(Of,g) = £(f,Og) (c): T,0f = OT,f



The half-face Aq corresponds to a “slide move”,
and the half-face A} corresponds to a “corner move”,
analogues of the “corner” and “knight’s” moves in [BB89].
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D. J. KELLEHER, H. PANZO, A. BRZOSKA AND A. TEPLYAEV

FIGURE 1. Barycentric subdivision of a 2-simplex, the graphs G{
GT and GT.

FIGURE 2. Adjacency (dual) graph G, in bold, and the barycen-
tric subdivision graph pictured together with the thin image of
ar.



BARLOW-BASS RESISTANCE ESTIMATES FOR HEXACARPET
o

FIGURE 3. On the left: the graph GT for barycentric subdivision
of a 2-simplex. On the right: the adjacency (dual) graph Gjy.




Theorem 1.1. The resistances across graphs GL and G (defined in Subsec-

tion 2.2) are reciprocals, that is RY = 1/R,,, and the asymptotic limits
1 1
log p* = lim —log R and logp = lim —log R,
n—oo N n—oo 1
exist (and p* = 1/p). Furthermore, 2/3 < pT < 4/5 and 5/4 < p < 3/2.
These estimates agree with the numerical experiments from [12], which suggest

that there exists a limiting Dirichlet form on these fractals and estimates p =
1.306, and hence p! ~ 0.7655.

Conjecture 1. In the case 5/4 < p < 3/2 (p =~ 1.306), we conjecture that the
recent results of A. Grigor’yan, J. Hu, K.-S. Lau and M. Yang in [2/-20, 28] can
imply existence of the Dirichlet form.

Conjecture 2. Since 2/3 < pT' < 4/5 < 5/4 < p < 3/2, we conjecture that
there is essentially no uniqueness of the Dirichlet forms, spectral dimensions,
resistance scaling factors etc for repeated barycentric subdivisions.



Selected results: spectral analysis

Theorem. (Derfel, Grabner, Vogl; T.; Kajino (2007-2011)) For a large
class of finitely ramified symmetric fractals, which includes the
Sierpinski gaskets, and may include the Sierpinski carpets, the

spectral zeta function
2
G(e) =3 N

has a meromorphic continuation from the half-pain Re(s) > ds to C.
Moreover, all the poles and residues are computable from the
geometric data of the fractal. Here ); are the eigenvalues if the
unique symmetric Laplacian.

» Example: ¢(s) is the Riemann zeta function up to a trivial factor
in the case when our fractal is [0, 1].

» In more complicated situations, such as the Sierpinski gasket,
there are infinitely many non-real poles, which can be called
complex spectral dimensions, and are related to oscillations in
the spectrum.



A
)] ° O __ log9

ds = log 5
O ° O

_ log4

10) ° @) dp = log 5
r\O -dR ! 1 r\ds
D o O
O ° O
O ° O

Poles (white circles) of the spectral zeta function of the Sierpinski gasket.



A part of an infinite Sierpinski gasket.



Figure: An illustration to the computation of the spectrum on the

infinite Sierpinski gasket. The curved lines show the graph of the
function 2R(-).

Theorem. (T. 1998, Quint 2009) On the Barlow-Perkins infinite
Sierpinski fractafold the spectrum of the Laplacian consists of a
dense set of eigenvalues 937 7(Xy) of infinite multiplicity and a
singularly continuous component of spectral multiplicity one
supported on R~ (JR).



The Tree Fractafold.



An eigenfunction on the Tree Fractafold.
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Theorem. (Strichartz, T. 2010) The Laplacian on the periodic
triangular lattice finitely ramified Sierpinski fractal field consists of
absolutely continuous spectrum and pure point spectrum. The
absolutely continuous spectrum is 9310, ?]. The pure point
spectrum consists of two infinite series of eigenvalues of infinite
multiplicity. The spectral resolution is given in the main theorem.
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Open problems

» Existence of self-similar diffusions on finitely ramified fractals?
on any self-similar fractals? on limit sets of self-similar groups? is
there a natural diffusion on any connected set with a finite
Hausdorff measure?

» Spectral analysison finitely ramified fractals but with few
symmetries, such as Julia sets? infinitely ramified fractals? Does
the Laplacian on the Sierpinski carpet has spectral gaps?
Meromorphic spectral zeta function?

» Distributions (generalized functions) on MMD+HKE?

» Derivatives on fractals (even in the simplest case of the
Sierpinski gasket are not well defined).

» Differential geometry of fractals?
» PDEs involving derivatives, such as the Navier-Stokes equation.



More on motivations and connections to other areas:
Cheeger, Heinonen, Koskela, Shanmugalingam, Tyson

J. Cheeger, Differentiability of Lipschitz functions on metric measure
spaces, Geom. Funct. Anal. 9 (1999) J. Heinonen, Lectures on
analysis on metric spaces. Universitext. Springer-Verlag, New York,
2001. J. Heinonen, Nonsmooth calculus, Bull. Amer. Math. Soc.
(N.S.) 44 (2007)

J. Heinonen, P. Koskela, N. Shanmugalingam, J. Tyson, Sobolev
classes of Banach space-valued functions and quasiconformal
mappings. J. Anal. Math. 85 (2001)
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Further directions (global)

» Fractal behavior of processes in algebra and geometry and
probabilistic approach to stability under Holder continuous
transformations (Gromov, Perelman).

» Mathematical physics, in particular, more general diffusion
processes than in Einstein theory, behavior of fractals in
magnetic field, Feynman integrals and field theories in general
spaces.

» Computational tools for natural sciences, such as geophysics,
chemistry, biology etc.
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Recent/current exciting new developments (local)

» Mario Bonk/Dimitrios Ntalampekos:
Potential theory on Sierpinski carpets with applications to
uniformization
(compare to Koskela/Zhou Geometry and analysis of Dirichlet
forms: Sierpinski gasket in harmonic coordinates)

» John Dever:
Local Space and Time Scaling Exponents for Diffusion on
Compact Metric Spaces
(compare to Balow/Bass, Kusuoka/Zhou, Grigor'yan/Telcs)

» Jun Kigami:
Weighted partition of a compact metrizable space, its
hyperbolicity, and Ahlfors regular conformal dimension



» Long term goals: Geometric analysis on fractal Dirichlet metric
measure spaces and 'elements of intrinsic differential geometry’,
in particular vector analysis and differential forms.

» Motivation:

» ’ltems of Riemannian flavor already studied’ (e.g. by
Ambrosio, Bakry, Cheeger, Emery, Gigli, Hino, Kajino,
Kigami, Koskela, Ledoux, Sturm, Zhou and others)

» ’ltems of deRham or Hodge type flavor hardly looked at’, but
in principle accessible using first order derivations (Cipriani,
Sauvageot, Weaver and others)

» Potential applications in physics (magnetic fields, fluid
dynamics, optical waveguides) and data science.

» A number of papers on sub-Riemannian and hypoelliptic
setting, at UConn: Baudoin, Chousionis, Gordina.



Smooth manifold case

» dimension dim M of M defined as the dimension of the
Euclidean space containing its charat images as open sets

» dim M equals its topological dimension dimiepo M
/“ \

4@ -
@l@ O

(Separable and metrizable X has dimipo X = nif nis minimal value
s.t. any finite open cover of X has refinement s.t. each x € X'is
contained in at most n + 1 sets of the refinement.)




» tangent space TyM at every x € M is n-dim vector space,
similarly for cotangent space T; M

» in particular, AK T M = {0} for k > n (there are no nontrivial
k-forms)

» dim T, M = dimygp, M forall x € M

M




Can talk about ‘dimension of (co-)tangent spaces’ using concepts of
AF-martingale dimension dimmart (Motoo, Watanabe, ...) resp. index
of Dirichlet form (Hino):

» There is an equiv class of (mutually abs. cont.) minimal energy
dominant measures m

» The index p of (€, F) is the smallest integer such that for any
N e Nandany f, ..., fy € F,

dar(f;, f;
rank( ( )( )) < p form-ae. x € X.
ij=1

» Hino '08, '10: p well def (indep of choice of m) and dimpyat = p



'Energy dominant measure’: For any f € F N C.(X), energy
measure I'(f) satisfies I'(f) << m; recall

e drin = etton) - 2E(P, ), @ € N1 CuX).

'Minimal’: If m’ has same property, then m << m'.



» Kusuoka '89: dimpyat = 1 for d-dim standard Sierpinski gasket

(although dimy = '°$§;Z1) may be very large)

» Hino '08, ’10, '13:
» P.c.f. self-similar fractals: dimmart = 1

» Self-similar generalized Sierpinski carpets:
1 < diMmart < ds




» dimpat Mmay be interpreted as m-essential supremum of
dimensions of tangent spaces in a measurable bundle sense
(papers of Hino, also Eberle '99, H./Réckner/Teplyaev ’13)

Examples
For X = R" with £(f) = [,.(VF)?dx, f € H'(R"), have
dimmart =n.

Examples
For X = M compact RMf with £(f) = [,,(Vf)?dvol, f € H' (M),
have dimmart = n.



v

v

v

v

v

Generally dimiopo and dimmary may differ

In particular: Topo one-dim spaces might carry nontrivial 2-forms
... Somehow counterintuitive (would expect diMmart < diMyopo)
... What happens ?

Connected to behaviour of (analogs of) the exterior derivation
d: L2(M, T*M,dvol) — L2(M,N2T*M, dvol)
taking 1-forms into 2-forms, a; dx’ — g—z dxi A dxi

Phenomenon does not occur in classical theory
For simplicity, illustrate issue for curl-operator



Curl of vector fields

» U C R3 open, connected, v = (v, Vo, v3) : U — R3 vector field

>curlv=va=(%—% ovi _ 9vs dvy _

If v velocity field of a fluid flow
» Small ball is made rotate
by flow

» axis points in direction of .
vector field curl v (right _
hand rule) !

» Angular speed is 3 of
length of curl v



» Connection to differential forms by duality argument: Given
v = (v1, V2, v3), consider w := v;dx’. Then

ov;

dw = _dx! A dx’
ox!
ov; ovy
=(— — — ) dx® Adx® + ...
(8x2 8x3) X X

» Two-dim curl: U C R? open, connected and vector field
u=(uy,uw): U— R?

» consider v := (U4, U2, 0) then function curlu : U — R,

ouUs ouy
| = S — a., 9 9
curlu = 22 (6,y) = 5100 )

is third component of curl v = (0, 0, curl u)



» In terms of differential forms,
d(ui(x, y)dx + ux(x,y)dy) = curlu(x,y) dx A dy

» Can consider curl : L2(U,R?) — L2(U) as closed unbounded
operator

» Next idea: Replace U by a generalized Sierpinski carpet with
2 = dimmart > dimtopo = 1



Sierpinski carpets

Consider non-self-similar generalized Sierpinski carpets studied by
Mackay/Tyson/Wildrick ’13.

» a = (a, a, ...) sequence of reals a; > 0 s.t. ; > 1 odd integer

» Rewrite S, := [0, 1]? as union of congruent closed subsquares
of side lengths a4, touching only at boundaries, remove middle
one to get a set S 1

» Rewrite S, 1 as union of congruent closed subsquares of side
lengths aya,, touching only at boundaries, remove middle ones
(w.r.t. the subsquares) to get a set S, 2

> Sa :=(\m>0 Sa,m generalized Sierpinski carpet associated with
sequence a



Standard self-similar carpet S, Non self-similar carpet S,

witha = (3, 3, 3> -+) witha = (3, 3, 7---)



Proposition

(Mackay/Tyson/Wildrick’13)

Ifa € I? then S, has positive two dim Lebesgue measure and “all
classical-type Sobolev inequalities”.

Examples

e _1
ap 1= 2n41

Leta € I? be fixed, write S := S, and L?(S) for L2-space on S w.r.t.
two dim Lebesgue.



Energy form

Consider
£s(f) = [ (VHx.y)f dlx.y), feC'E).

Polarization yields bilinear form.

The form (£s, C'(R?)) is closable, and its closure (£s, Ds) is a
strongly local regular Dirichlet form on L2(S).

(Follows as in Koskela/Shanmugalingam/Tyson ‘04, Shanmugalingam
'00; Newtonian Sobolev spaces; for f € C'(R?) the function |V f| is
minimal upper gradient of f.)



For a vector field u = (uy, up) with uy, u, € C'(R2), curluis a
continuous function and can be restricted to S, and

(curlu)|s € L%(S)
Therefore: May view curl as densely defined unbounded operator
curl : L?(S,R?) — L%(S)
with domain C'(R2, R2)

Slightly reformulated: Endow curl with abstract domain dom curl and
let curl™ be its adjoint with domain dom(curl™)



Theorem (Hinz/T. ’15)
1-dim Hodge-Helmholtz composition holds (despite that dimy = 2).

Theorem (Hinz/T.’17)
Leta € I? be such that

a---an_

lim 91

n—oo an
Ifdom curl contains all smooth vector fields, then
dom(curl*) C L%(S) is {0} and, in particular, the operator
(curl, dom curl) is not closable.

('a decays fast enough but not too fast’.)

Examples

— _1
an 1= 2n41"



Proof (by contradiction)

Suppose 0 # u € dom(curl*) C L3(S) and
curl* u = w € L?(S,R?). Then ex. smooth function f such that
(U, ) 12(5) > 0.

Claim: Can construct sequence (v,), of smooth vector fields v, s.t.

(a) lim,curl v, = fin L%(S)

(b) lim, v, = 0in L3(S, R?).

If so, then

0= Ii,r1n (W, Vn) 2(g rey = Ii,r1n (curl™ u, Vp) 2 g2y = Iitr;n (u,curl vp) 2
= (U, f) 25
>0,

what cannot be true. Suffices to show claim.



Cover S by compact subsets Sy  obtained by taking parallels to the
axes through the midpoints of all holes of size 6, = ay - - - ap.
Intersections are Cantor sets and diam Sy, < V26n_1.




Step 1: We show how to choose small nbhs U, x of the boundaries of
the sets Sy, x and construct sequence of energy finite functions gn s.t.

(i) Vgn arbitrarily close to vector field (0, 1) in L2(S, R?)

(if) each gp is locally constant on each Up k.



» For fixed n, consider Cantor-set parts of boundaries of the Sp,
parallel to x-axis, let F, be union of their vertical parallel sets

» Let ¢, be a continuous function that is constant in x on S,
constant in y on F,, and on each connected component of
S\ F, differs from g(x, y) := y by an additive constant.




Each ¢, is restriction to S of a Lipschitz function, hence of finite
energy. Moreover

im &(g — ¢n) = lim | (V(g = o)* A’

= lim A\%(F,) < lim =lima, = 0.
n n n

a1 .o .an_1

Now consider vertical Cantor set parts of the boundaries of the sets
Sn.k. Connect two vertically adjacent holes by rectangles with
horizontal side length 8, and vertical side length

en:= (1 — ap)(ai - - - an—1). Inscribe trapezoids with lower edge
length 6, and upper edge length 6,/ ...



Let v, be the function on [0, 1]? created by putting little tents over
each rectangle such that 1, is zero on left, right and lower edge of
each rectangle, has value e, on the upper (short) edge of the
trapezoid and is linear in between. For boundary pieces proceed
similarzly by 'mirroring to the outside’. Number of such tents is

— aq---ap_1’



The functions gp := ¢n — ¥ NOW satisfy
lim £5(g — gn)'/? < lim E5(g — ¢n)"/2 + lim Es(yn)'/% = 0,
what is (i). Each g is locally constant on the neighborhood Up,  of

Sh,k consisting of two rectangles and two trapezoids (with
modifications at the boundary of S), what shows (ii).



Step 2: Let f,,x be one of the values of the function f on Sy, k, and let
Xn,kx be one of the values of the x coordinate on Sp, k. There exists a
sequence of smooth functions h, such that

[[Pnlsup < @1 -+ @n—1]|Fl|sup
and on each set S, k \ Unx we have
hn(x,y) = fak(X — Xn k).

Then we define
Vn == hnvgn-

Obviously (b) is satisfied, lim, v, = 0 in L2(S, R?).



Strongly local forms on compact spaces

This is a part of the broader program to develop probabilistic,
spectral and vector analysis on singular spaces by carefully
building approximations by graphs or manifolds.

X compact metric space, u finite Radon measure, full support,

(€, F) strongly local regular Dirichlet form. We consider differential
forms with respect to a ‘coordinate sequence’ and an energy
dominant measure.

Theorem

(Hinz/T. '15)

Suppose that X is topologically one-dimensional. Then, under some
natural conditions, either the martingale dimension of (€, F) is one or
(01, F ® Avip) is not closable.



Canonical diffusions on the pattern spaces of
aperiodic Delone sets (Patricia Alonso-Ruiz, Michael
Hinz, Rodrigo Trevino, T.)

A subset A C R is a Delone set if it is uniformly discrete:

Je>0: |X—y|>e VX,yEN

and relatively dense:

JR>0: AN Br(X) #2 VX ecRY.

A Delone set has finite local complexity if VR > 03 finitely many
clusters Py, ..., P,,R such that for any X € R there is an i such that
the set Bg(X) N A is translation-equivalent to P;. A Delone set A is
aperiodic if A — f = A implies T = 0. It is repetitive if for any cluster
P C A there exists Rp > 0 such that for any ¥ € R9 the cluster
Bg,.(X) N A contains a cluster which is translation-equivalent to P.
These sets have applications in crystallography (= 1920), coding
theory, approximation algorithms, and the theory of quasicrystals.



Electron diffraction picture of a Zn-Mg-Ho quasicrystal

Aperiodic tilings were discovered by mathematicians in the early
1960s, and, some twenty years later, they were found to apply to the

study of natural quasicrystals (1982 Dan Shechtman, 2011 Nobel
Prize in Chemistry).



Penrose tiling




pattern space of a Delone set

Let Ag C RY be a Delone set. The pattern space (hull) of Ag is the
closure of the set of translates of Ag with respect to the metric g, i.e.

Qp, = {<p-,. (o) :Te Rd}.

Definition

Let Ag C RY be a Delone set and denote by @7 (No) = No — fits
translation by the vector f e RY. For any two trarlslates A1 and A of
Mo define o(A1,A2) =inf{e > 0: 3§t € B.(0):

B:(0) N ws(M) = B1(0) N p(A2)} A 271/

Assumption

The action of R? on Q is uniquely ergodic:

Q is a compact metric space with the unique R9-invariant probability
measure p.



Topological solenoids
(similar topological features as the pattern space €2):




Theorem
(i) If W = (Wi)s>o is the standard Gaussian Brownian motion on
R9, then for any N € Q the process X! := g (N) = A — Wy is
a conservative Feller diffusion on (R, g).
(iiy The semigroup P:f(N) = E[f(X])] is

self-adjoint on Li, Feller but not strong Feller.

Its associated Dirichlet form is regular, strongly local, irreducible,
recurrent, and has Kusuoka-Hino dimension d.

(iiiy The semigroup (P)t~0 does not admit heat kernels
with respect to p. It does have Gaussian heat kernel with
respect to the not-o -finite (no Radon-Nykodim theorem)
pushforward measure A3

t, h_1 A if N orb(A4),
pa(t, N, A2) = { Ode( A ( 2)) ;th;,‘fws; ( 1) (1)

(iv) There are no semi-bounded or L' harmonic
functions (Liouville-type).



no classical inequalities

Useful versions of the Poincare, Nash, Sobolev,
Harnack inequalities DO NOT HOLD,

except in orbit-wise sense.



spectral properties

Theorem
The unitary Koopman operators U; on L?(Q, p1) defined by
U;f = f o oy commute with the heat semigroup

UiP, = P Uy

hence commute with the Laplacian A, and all spectral operators,
such as the unitary Schrédinger semigroup.

... hence we may have continuous spectrum (no eigenvalues)
under some assumptions even though p is a probability
measure on the compact set Q.

Under special conditions Py is connected to the evolution of a
Phason:

“Phason is a quasiparticle existing in quasicrystals due to their
specific, quasiperiodic lattice structure. Similar to phonon, phason is
associated with atomic motion. However, whereas phonons are
related to translation of atoms, phasons are associated with atomic
rearrangements. As a result of these rearrangements, waves,
describing the position of atoms in crystal, change phase, thus the
term “nhacon” (from the wikinedia)”


https://en.wikipedia.org/wiki/Phason

Phason evolution

Corollary

The unitary Koopman operators U on L?(Q, p1) defined by
U;f = f o oy commute with the heat semigroup

UiP, = P,U;

hence commute with the Laplacian A, and all spectral operators,
including the unitary Schrédinger semigroup e’!

it __ it
Upelst = ety

Recent physics work on phason (“accounts for the freedom to choose
the origin”): Topological Properties of Quasiperiodic Tilings

(Yaroslav Don, Dor Gitelman, Eli Levy and Eric Akkermans

Technion Department of Physics)
https://phsites.technion.ac.il/eric/talks/

J. Bellissard, A. Bovier, and J.-M. Chez, Rev. Math. Phys. 04, 1
(1992).


https://phsites.technion.ac.il/eric/talks/

Helmholtz, Hodge and de Rham

Theorem
Assume d = 1. Then the space L?(Q, u, R') admits the orthogonal
decomposition

L2(Q, u,R") = Im V @ R(dx). 2)

In other words, the L2-cohomology is 1-dimensional, which is
surprising because the de Rham cohomology is not one
dimensional.

M. Hinz, M. Réckner, T., Vector analysis for Dirichlet forms and
quasilinear PDE and SPDE on fractals, Stoch. Proc. Appl. (2013). M.
Hinz, T., Local Dirichlet forms, Hodge theory, and the Navier-Stokes
equation on topologically one-dimensional fractals, Trans. Amer.
Math. Soc. (2015,2017).

Lorenzo Sadun. Topology of tiling spaces, volume 46 of University
Lecture Series. American Mathematical Society, Providence, Rl,
2008. Johannes Kellendonk, Daniel Lenz, and Jean Savinien.
Mathematics of aperiodic order, volume 309. Springer, 2015.



BV and Besov spaces on fractals with Dirichlet forms
(Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke
Rogers, Nages Shanmugalingam, T.)

Open question: on the Sierpinski carpet

log 2
k=dw—dy+dy—1=dw—dyn+ —
log3

would give the optimal Hélder exponent for harmonic functions?
[Strongly supported by numerical results: L.Rogers et al|

References: Besov class via heat semigroup on Dirichlet spaces
I: Sobolev type inequalities

arXiv:1811.04267

II: BV functions and Gaussian heat kernel estimates
arXiv:1811.11010

[ll: BV functions and sub-Gaussian heat kernel estimates
arXiv:1903.10078



For nested fractals we do have k = dw — dy > 0. Moreover, a set
has finite perimeter if and only if it has finite boundary,
P(E) ~ #(OE).
Theorem (research in progress)
f € BV iff Vf is a “vector valued Radon measure”.
This is understood in the distributional sense (Hinz, Rogers,
Strichartz et al)
Corollary
1. on the Vicsek set, any BV function is R'-BV along each
geodesic path.
2. on the Sierpinski gasket, any BV function is discontinuous.




uconN

end of the talk :_) UNIVERSITY OF CONNECTICUT

Thank you!

reminder: 7th Cornell Conference on Analysis,
Probability, and Mathematical Physics on
Fractals: June 9-13, 2020
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