Please write Your name:

Show all work. You should either write at a sentence explaining your reasoning, or annotate your math work with brief explanations. There is no need to simplify, and no calculators are needed.

In this quiz use the notation $\Phi(x)$ for the distribution function for $\mathcal{N}(0,1)$, that is

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y=\mathbb{P}(Z<x)
$$

where Z is the standard normal random variable. You do not need a table of values of Φ.
(1) When a die is rolled, you win $\$ 1$ if the outcome is divisible by 3 , or $\$ 0$ otherwise. This means that you win $\$ 1$ for each roll which is a 3 , and for each roll which is a 6 , but win nothing for other results. Let X be the number of dollars you win after 450 rolls. What is the mean and the standard deviation of X ? Answer: $\mathbb{E} X=\mu=450 \cdot 1 / 3=150 \quad \mathrm{SD}(X)=\sigma=\sqrt{n p(1-p)}=\sqrt{450 \cdot \frac{1}{3} \cdot \frac{2}{3}}=\sqrt{\frac{900}{3}}=\sqrt{100}=10$
(2) Estimate the probability that $X>150$ using the normal approximation.

Answer: $\mathbb{P}(X>150) \approx \mathbb{P}(150+10 Z>150)=\mathbb{P}(Z>0)=1 / 2$
A more accurate answer: $\mathbb{P}(X>150) \approx \mathbb{P}(150+10 Z>150.5)=\mathbb{P}(Z>0.05)=1-\Phi(0.05)$ In the table this is $1-0.51994=0.48006$
(3) Estimate the probability that $X>250$ using the normal approximation.

Answer:

$$
\mathbb{P}(X>150) \approx \mathbb{P}(150+10 Z>250)=\mathbb{P}(Z>10)
$$

In the wikipedia table
https://en.wikipedia.org/wiki/Standard_normal_table\#Complementary_cumulative
this is $7.61985 E-24=0.00000000000000000000000761985$
A more accurate answer: $\mathbb{P}(X>250) \approx \mathbb{P}(150+10 Z>250.5)=\mathbb{P}(Z>10.05)=1-\Phi(10.05)$ which is an even smaller number.

(4) Find a formula for $\mathbb{P}(0 \leq X \leq 3)$ if X is $\mathcal{N}(-1,4)$. Your answer should include Φ twice.

Answer: $\mathbb{P}(0 \leq X \leq 3)=\mathbb{P}(0 \leq-1+2 Z \leq 3)=\mathbb{P}(1 / 2 \leq Z \leq 2)=\Phi(2)-\Phi(1 / 2)$
In the table this is $0.97725-0.69146=0.28579$
(5) If a coin is tosses 16 times, and X is the number of heads, what is the normal approximation for $\mathbb{P}(X>12)$ using the normal approximation. Your answer should include Φ.
Answer: Here $n=16, p=1 / 2, \mu=8, \sigma=\sqrt{n p(1-p)}=2$
$\mathbb{P}(X>12) \approx \mathbb{P}(8+2 Z>12)=\mathbb{P}(Z>2)=1-\Phi(2)$
which is $1-0.97725=0.02275$ from the table.
A more accurate answer: $\mathbb{P}(X>12) \approx \Phi(8+2 Z>12.5)=\Phi(Z>2.25)=1-\Phi(2.25)$
In the table this is $1-0.98778=0.01222$
The exact number using binomial distribution is

$$
\sum_{k=13}^{16} \frac{16!}{(k)!(16-k)!} 2^{-16}=\frac{697}{65536} \approx 0.010635 \ldots
$$

This was not on the quiz, but the Poisson approximation for counting tails with $\lambda=8$ would give $e^{-8} \sum_{k=0}^{3} \frac{8^{k}}{k!} \approx 0.04238 \ldots$
[(optional question for extra credit)]:
In the same situation, estimate the probability that $\mathbb{P}(X=12)$ using the normal approximation.
Answer: $\mathbb{P}(X=12) \approx \mathbb{P}(11.5<8+2 Z<12.5)=\mathbb{P}(1.75<Z<2.25)=\Phi(2.25)-\Phi(1.75)$
which is $0.98778-0.95994=0.02784$ from the table.

The exact number using binomial distribution is

$$
\frac{16!}{(12)!(16-12)!} 2^{-16}=\frac{455}{16384} \approx 0.027771 \ldots
$$

