.....

Sample Test 2 questions:

- (1) Let X be a Poisson random variable with $\mathbb{E}X = 4$. Find the formula for $\mathbb{P}(2 \leq X \leq 5)$.
- (2) Let X be a binomial random variable with $\mathbb{E}X = 4$ and n = 10. Find the formula for $\mathbb{P}(2 \leq X \leq 5)$.
- (3) Let X be the number of coin tosses until we have one head. Find $\mathbb{E}X$ and $\mathrm{Var}X$. Find $\mathbb{P}(X \ge 3)$
- (4) Suppose X has the following p.d.f.

$$f(x) = \begin{cases} ax^2 & \text{if } 1 \leqslant x \leqslant 2\\ 0 & \text{otherwise} \end{cases}$$

Find a, $\mathbb{E}X$, VarX, and the cdf F(x). Make a picture of the p.d.f. and c.d.f.

(5) Suppose X has the following p.d.f.

$$f(x) = \begin{cases} \frac{a}{x^2} & \text{if } 1 \leqslant x \leqslant 3\\ 0 & \text{otherwise} \end{cases}$$

Find a, $\mathbb{E}X$, VarX, and the cdf F(x). Make a picture of the p.d.f. and c.d.f.

- (6) Find the numerical value for $\mathbb{P}(-2 \le X \le 3)$ if X is $\mathcal{N}(3,4)$. Your answer should include Φ twice. After that, use the normal table attached in the end of the quiz find the approximate answer.
- (7) Find a formula for $\mathbb{P}(-2 \le X \le 3)$ if X is $\mathcal{N}(-3,4)$. Your answer should include Φ twice. After that, use the normal table attached in the end of the quiz find the approximate answer.
- (8) If Z_1 and Z_1 are standard normal independent random variables, and $X = 3Z_1 + 4Z_2$, find $\mathbb{P}(-2 \le X \le 3)$ Your answer should include Φ twice. After that, use the normal table attached in the end of the quiz find the approximate answer.
- (9) Let X be a binomial random variable with $\mathbb{E}X = 60$ and n = 150. Find the normal approximation for $\mathbb{P}(54 \leq X \leq 72)$.
- (10) Let X be the number of tails in 25 fair coin tosses. Find the best normal approximation for $\mathbb{P}(X \leq 15)$.
- (11) Let a fair dice be thrown 2000 times. Find the normal approximation of the probability that 6 appears at least 300 times.

- (12) Let X be an exponential random variable with parameter $\lambda = 2$. Find
 - (a) Find P(X > 3)
 - (b) Find P(X > 3|P > 2)
 - (c) Find P(4 < X < 6|P > 2)
- (13) Let X be a uniform random variable on [1,5]. Find
 - (a) Find P(X > 3)
 - (b) Find P(X > 3|P > 2)
 - (c) Find P(4 < X < 6|P > 2)(d) Find $\mathbb{E}e^{2X}$.

 - (e) Find $\mathbb{E}\frac{1}{X^2}$.
- (14) Consider random variables X and Y with the joint probability density function

$$f(x,y) = \begin{cases} axy^2 & \text{if } 0 \le x \le y \le 2\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find a
- (b) Find the marginal p.d.f. $f_X(x)$.
- (c) Find the marginal p.d.f. $f_Y(y)$.
- (15) Consider random variables X and Y with the joint probability density function

$$f(x,y) = \begin{cases} axy^2 & \text{if } 0 \le y \le x \le 2\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find a
- (b) Find the marginal p.d.f. $f_X(x)$.
- (c) Find the marginal p.d.f. $f_Y(y)$.
- (16) Consider random variables X and Y with the joint probability density function

$$f(x,y) = \begin{cases} axy^2 & \text{if } 0 \le x, \ 0 \le y, \ x+y < 2\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find a
- (b) Find the marginal p.d.f. $f_X(x)$.
- (c) Find the marginal p.d.f. $f_Y(y)$.
- (17) In the previous problem, let $Y_1 = X + Y$ and $Y_2 = X Y$. Find the joint probability density function $f_{Y_1,Y_2}(y_1,y_2)$