BV functions and derivatives on fractals

Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke Rogers, Nageswari Shanmugalingam, Alexander Teplyaev

November 2019 * Cornell

▲ @ ▶ ▲ ∃ ▶

Joint work with

Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke Rogers, Nageswari Shanmugalingam.

- Besov class via heat semigroup on Dirichlet spaces I: **Sobolev type inequalities**, arXiv:1811.04267
- Besov class via heat semigroup on Dirichlet spaces II: **BV functions and Gaussian heat kernel estimates**, arXiv:1811.11010
- Besov class via heat semigroup on Dirichlet spaces III:
 BV functions and sub-Gaussian heat kernel estimates, arXiv:1903.10078
 - New conjectures about Hölder continuity on the Sierpinski carpet
 - BV functions on nested fractals (research in progress).
- **BV functions and fractional Laplacians on Dirichlet spaces**, arXiv:1910.13330
- BV functions on finitely ramified fractals, in preparation

Joint work with Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke Rogers, Nageswari Shanmugalingam.

Abstract: we introduce heat semigroup-based Besov classes for general Dirichlet spaces, study quantitative regularization estimates for the heat semigroup in this scale of spaces, and obtain a far reaching L^{p} -analogue, $p \ge 1$, of the Sobolev inequality that was proved for p = 2 by N. Varopoulos under the assumption of ultracontractivity for the heat semigroup. The case p = 1 may yield isoperimetric type inequalities and Bounded Variation (BV) function spaces.

Motivation

Isoperimetric inequalities and BV functions, for \mathbb{R}^n and manifolds, were studied by **Caccioppoli**, **De Giorgi**, Federer, Ledoux, Miranda et al and more recently by **Ambrosio (related to Cheeger, Hajłasz, Heinonen, Koskela)** et al in non-smooth setting.

Besov and related spaces in DMMS and heat semi-group setting were studied by Barlow, Bass, Hambly, Hinz, Hu, Jonsson, Grigoryan, Kumagai, Lau, Pietruska-Pałuba, Triebel, Wallin, Zähle.

Bakry, Coulhon, Ledoux, Saloff-Coste: Sobolev inequalities in disguise, 1995

Contents of paper I

- 1 Introduction 2 Preliminaries 3 Heat semigroup-based Besov spaces
- 4 Properties of the heat semigroup-based Besov spaces
- 4.1 Locality in time

4.2 $B^{2,1/2}(X) = \mathcal{F}$ and non-triviality of some of the spaces $B^{p,\alpha}(X)$

- **4.3** Triviality of some of the spaces $B^{p,\alpha}(X)$
- 4.4 Banach space property and reflexivity
- 4.5 Interpolation inequalities
- 4.6 Pseudo-Poincaré inequalities and fractional powers of the generator
- ${\bf 5}$ Continuity of ${\pmb P}_t$ on the Besov spaces and critical exponents
- 5.1 Continuity
- 5.2 Critical Besov exponents
- ${\bf 6}$ Sobolev and isoperimetric inequalities
- 6.1 Weak type Sobolev inequality
- 6.2 Capacitary estimates
- 6.3 Isoperimetric inequalities
- 6.4 Strong Sobolev inequality
- 6.5 Application
- 7 Cheeger constant and Gaussian isoperimetry
- ${\bf 7.1}$ Buser's type inequality for the Cheeger constant of a Dirichlet space
- 7.2 Log-Sobolev and Gaussian isoperimetric inequalities $\rightarrow \langle a \rangle \langle a \rangle \langle a \rangle$

Sobolev type inequalities for general Dirichlet forms

In \mathbb{R}^n , $n \geq 2$,

$$\|f\|_{L^q(\mathbb{R}^n)} \le C \| |\nabla f| \|_{L^p(\mathbb{R}^n)}, \quad f \in C_0^\infty(\mathbb{R}^n)$$

$$\tag{1}$$

 $1 \leq p < n, q = \frac{np}{n-p}$, and C depends on n and p.

For a measure space (X, μ) with a symmetric Dirichlet form \mathcal{E} with domain \mathcal{F} , N. Varopoulos proved in 1985 that a heat kernel upper bound of the type $p_t(x, y) \leq \frac{c}{t^{n/2}}$, n > 2, implies the following Sobolev inequality

$$\|f\|_{L^q(\mathbf{X},\mu)} \le C\sqrt{\mathcal{E}(f,f)}, \quad f \in \mathcal{F},$$
(2)

where $q = \frac{2n}{n-2}$.

Note that the condition

$$p_t(x,y) \leq Ct^{-\beta}$$

is possible to verify in many classical and fractal examples because it is equivalent to the **Nash inequality**

$$\|f\|_{L^2(\mathbf{X},\mu)}^{2+2/\beta} \leq C\mathcal{E}(f,f)\|f\|_{L^1(\mathbf{X},\mu)}^{2/\beta}$$
(3)

by Carlen-Kusuoka-Stroock 1987.

< (T) > <

Theorem (Weak Sobolev and isoperimetric inequalities):

Let $(X, \mu, \mathcal{E}, \mathcal{F})$ be a Dirichlet space. Let $\{P_t\}_{t \in [0,\infty)}$ denote the Markovian semigroup associated with $(X, \mu, \mathcal{E}, \mathcal{F})$. Let $p \ge 1$. Assume that P_t admits a measurable heat kernel $p_t(x, y)$ satisfying, for some C > 0 and $\beta > 0$, $p_t(x, y) \le Ct^{-\beta}$ for $\mu \times \mu$ -a.e. $(x, y) \in X \times X$, and for each $t \in (0, +\infty)$. Let $0 < \alpha < \beta$. Let $1 \le p < \frac{\beta}{\alpha}$. There exists a constant $C_{p,\alpha}0$ such that

$$\sup_{s\geq 0} s \mu \left(\{x \in X : |f(x)| \geq s\} \right)^{\frac{1}{q}} \leq C_{p,\alpha} \|f\|_{p,\alpha},$$

$$\|f\|_{p,\alpha}:=\sup_{t>0}t^{-\alpha}\left(\int_X\int_X|f(x)-f(y)|^pp_t(x,y)d\mu(x)d\mu(y)\right)^{1/p}.$$

where $q = \frac{p\beta}{\beta - p\alpha}$. Therefore, there exists a constant

$$C_{iso} = \frac{C^{\frac{\alpha}{\beta}}(\alpha + \beta)^{\frac{\alpha + \beta}{\beta}}}{2\beta \alpha^{\frac{\alpha}{\beta}}}$$

such that for every subset set ${\it E} \subset {\it X}$ with $1_{\it E} \in {\it B}^{1,lpha}({\it X})$

$$\mu(\boldsymbol{\mathsf{E}})^{\frac{\beta-\alpha}{\beta}} \leq C_{iso} \|\mathbf{1}_{\boldsymbol{\mathsf{E}}}\|_{1,\alpha} := C_{iso} \boldsymbol{\mathsf{P}}_{\alpha}(\boldsymbol{\mathsf{E}}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Strong Sobolev inequality):

Let $(X, \mu, \mathcal{E}, \mathcal{F})$ be a Dirichlet space. Let $\{P_t\}_{t \in [0,\infty)}$ denote the Markovian semigroup associated with $(X, \mu, \mathcal{E}, \mathcal{F})$. Let $p \geq 1$. Assume that P_t admits a measurable heat kernel $p_t(x, y)$ satisfying, for some C > 0 and $\beta > 0$, $p_t(x, y) \leq Ct^{-\beta}$ for $\mu \times \mu$ -a.e. $(x, y) \in X \times X$, and for each $t \in (0, +\infty)$. Assume that there exist $\alpha > 0$ and C > 0 such that for every $f \in L^p(X, \mu)$

$$\|f\|_{\rho,\alpha} \leq C \liminf_{t\to 0} t^{-\alpha} \left(\int_X \int_X |f(x) - f(y)|^\rho \rho_t(x,y) d\mu(x) d\mu(y) \right)^{1/\rho},$$

where

$$\|f\|_{p,\alpha}:=\sup_{t>0}t^{-\alpha}\left(\int_X\int_X|f(x)-f(y)|^pp_t(x,y)d\mu(x)d\mu(y)\right)^{1/p}.$$

Then, if $0 < \alpha < \beta$ and $p < \frac{\beta}{\alpha}$, there exists a constant $C_{p,\alpha,\beta} > 0$ such that for every $f \in L^p(X,\mu)$,

$$\|f\|_{L^q(X,\mu)} \leq C_{p,\alpha,\beta} \|f\|_{p,\alpha},$$

where $\boldsymbol{q} = \frac{\boldsymbol{p}\boldsymbol{\beta}}{\boldsymbol{\beta}-\boldsymbol{p}\boldsymbol{\alpha}}$.

Locality in time

Lemma

Let $p \geq 1$ and $\alpha \geq 0$. Then $\mathsf{B}^{p,\alpha}(X) =$

$$\left\{f\in L^p(X,\mu)\,:\,\limsup_{t\to 0}t^{-\alpha}\left(\int_X P_t(|f-f(y)|^p)(y)d\mu(y)\right)^{1/p}<+\infty\right\}.$$

Moreover, if $\beta > \alpha$, then $B^{p,\beta}(X) \subset B^{p,\alpha}(X)$. Furthermore, for $f \in B^{p,\alpha}(X)$, and for every t > 0, we have

$$\|f\|_{p,\alpha} \leq \frac{2}{t^{\alpha}} \|f\|_{L^{p}(X,\mu)} + \sup_{s \in (0,t]} s^{-\alpha} \left(\int_{X} P_{s}(|f - f(y)|^{p})(y) d\mu(y) \right)^{1/p}.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Triviality of some of the spaces $B^{p,\alpha}(X)$

 $\mathcal{F} = B^{2,1/2}(X)$ is dense in L^2 . Assume $\mathcal{E}(f, f) = 0$ only for constant f. Then, any $f \in B^{p,\alpha}(X)$ with $1 \le p \le 2$ and $\alpha > 1/p$ is constant.

Theorem

Let p > 2. If $f \in B^{p,1/2}(X) \cap \mathcal{F}$ then there is $\Gamma(f) \in L^1(X,\mu)$ such that for all $g \in L^{\infty}(X,\mu) \cap \mathcal{F}$,

$$\int_{X} \mathbf{g} \mathbf{\Gamma}(f) d\mu = 2\mathcal{E}(\mathbf{g}f, f) - \mathcal{E}(f^2, \mathbf{g}).$$

Corollary

If $\mathbf{B}^{p,1/2}(\mathbf{X}) \cap \mathcal{F}$ is dense in \mathcal{F} for some p > 2, then \mathcal{E} admits a carré du champ operator. Suppose that for all $f \in \mathcal{F}$ we have that f is constant whenever $\mathcal{E}(f, f) = 0$. If \mathcal{E} is regular and the energy measure ν_f is singular to μ for any non-constant $f \in \mathcal{F}$. Then $\mathbf{B}^{p,1/2}(\mathbf{X})$ contains only constant functions when p > 2.

イロト 不得下 イヨト イヨト 二日

Continuity of P_t on the Besov spaces

Theorem

Let $1 There exists a constant <math display="inline">C_p > 0$ such that for every $f \in L^p(X,\mu)$ and $t \geq 0$

$$\|P_t f\|_{p,1/2} \leq \frac{C_p}{t^{1/2}} \|f\|_{L^p(X,\mu)}.$$

In particular $P_t : L^p(X, \mu) \to B^{p,1/2}(X)$ is bounded for t > 0.

Corollary

Let $2 \le p < +\infty$ and $\alpha > 1/2$. If $f \in B^{p,\alpha}(X)$ then $\mathcal{E}(f, f) = 0$. Let 1 . Let <math>L be the generator of \mathcal{E} and \mathcal{L}_p be the domain of L in $L^p(X, \mu)$. Then

$$\mathcal{L}_{p} \subset \mathsf{B}^{p,1/2}(X)$$

and for every $f \in \mathcal{L}_{p}$, $\|f\|_{p,1/2}^{2} \leq C \|Lf\|_{L^{p}(X,\mu)} \|f\|_{L^{p}(X,\mu)}$.

イロト 不得下 イヨト イヨト 二日

Besov spaces and critical exponents

 $\alpha_p^*(X) = \sup\{\alpha > 0 : \mathbf{B}^{p,\alpha}(X) \text{ is dense in } L^p(X,\mu).\}$ $\alpha_n^{\#}(X) = \sup\{\alpha > 0 : B^{p,\alpha}(X) \text{ contains non-constant functions}\}.$ **1** Both $p \mapsto \alpha_n^*(X)$ and $p \mapsto \alpha_n^{\#}(X)$ are non-increasing; • For $1 \leq p \leq 2$ we have $\alpha_p^{\#}(X) \geq \alpha_p^{*}(X) \geq \frac{1}{2}$; If we assume that $\mathcal{E}(f, f) = 0$ implies f constant, then we have in addition If $1 \leq p \leq 2$ then $\alpha_p^*(X) \leq \alpha_p^{\#}(X) \leq \frac{1}{p}$; **a** $\alpha_2^*(X) = \alpha_2^{\#}(X) = \frac{1}{2};$ • For $2 \leq p < \infty$ one has $\alpha_n^*(X) \leq \alpha_n^{\#}(X) \leq \frac{1}{2}$; Furthermore if \mathcal{E} is regular and the energy measure ν_f for each non-constant $f\in \mathcal{F}$ is singular to μ (as is the case on some fractals) we obtain • For p > 2 one has $\alpha_n^*(X) \le \alpha_n^{\#}(X) < \frac{1}{2}$. Theorem For Riemannian manifolds, sub-Riemannian manifolds, or metric graphs one has $\alpha_1^*(X) = \alpha_1^{\#}(X) = \frac{1}{2}$, but for nested fractals or their products $\alpha_1^*(X) = \alpha_1^{\#}(X) = \frac{d_H - d_{tH} + 1}{d_{tH}}$

Topological-Hausdorff dimension:

$d_{tH} := 1 + \inf(d_H(\partial O))$

where the \inf is taken over collections of open sets O that form a base of the topology.

Compare to the topological dimension $d_t := 1 + \inf(d_t(\partial O))$ where the inf is taken over collections of open sets O that form a base of the topology.

イロト イポト イラト イラト

Main examples

Figure: A part of an infinite, or unbounded, Vicsek set and a Sierpinski gasket. $d_H = \frac{\log N}{\log c}, \quad d_{tH} = 1, \quad \alpha_1^*(X) = \alpha_1^\#(X) = \frac{d_H - d_{tH} + 1}{d_W} = \frac{d_H}{d_W}$

548	Selficati	Halling 1
1.11		
		- 52 i
E ST		

Figure: A part of an infinite, or unbounded, Sierpinski carpet, $d_{tH} - 1 = \frac{\log 2}{\log 3}$

Image: A match a ma

Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates.

Let (X, d, μ) be a locally compact complete metric Radon measure space and

$$\|f\|_{\mathcal{KS}^{\lambda,p}(X)}^p := \limsup_{r \to 0^+} \int_X \int_{B(x,r)} \frac{|f(y) - f(x)|^p}{r^{\lambda p} \mu(B(x,r))} \, d\mu(y) \, d\mu(x) < +\infty.$$

The L^p-Korevaar-Schoen critical exponent is

 $\lambda_p^{\#} = \sup\{\lambda > 0 \ : \ \mathcal{KS}^{\lambda,p}(X) \text{ contains non-constant functions}\}.$

GHKE

With a 1-Poincaré inequality and doubling, one has $\lambda_p^{\#} = 1$ for every $p \ge 1$. Note that, at the critical exponent $\lambda_2^{\#} = 1$, one can construct a Dirichlet form

$$\mathcal{E}(f) \simeq \|f\|_{\mathcal{K}S^{1,2}(X)}^2$$

with domain $KS^{1,2}(X)$ by using a choice of a Cheeger differential structure. This Dirichlet form is then strictly local and the intrinsic distance $d_{\mathcal{E}}$ associated to \mathcal{E} is bi-Lipschitz equivalent to the original metric d. At the critical exponent $\lambda_1^{\#} = 1$, one has $KS^{1,1}(X) = BV(X)$ and

 $\operatorname{Var}(f) \simeq \|f\|_{\operatorname{KS}^{1,1}(X)}.$

(日) (同) (日) (日)

sGHKE

$$p_t(x,y) \simeq t^{-d_H/d_W} \exp\left(-c\left(\frac{d(x,y)^{d_W}}{t}\right)^{\frac{1}{d_W-1}}\right)$$
$$\lambda_2^{\#} = \frac{d_W}{2}$$
$$\mathcal{E}(f) \simeq \|f\|_{KS^{\frac{d_W}{2},2}(X)}^2$$

For nested fractals

$$\lambda_1^{\#} = d_{H}$$

is the Hausdorff dimension. For the Sierpinski carpet we prove that

$$\lambda_1^{\#} \geqslant \textit{d}_{H} - \textit{d}_{tH} + 1$$

and conjecture that in fact there is an equality. Here d_{tH} is the topological-Hausdorff dimension.

18 / 23

• • • • • • • • • • • •

Weak Bakry-Émery nonnegative curvature condition

We say that the weak Bakry-Émery non-negative curvature condition $wBE(\kappa)$ is satisfied if there exist a constant C > 0 and a parameter $0 < \kappa < d_W$ such that for every t > 0, $g \in L^{\infty}(X, \mu)$ and $x, y \in X$,

$$|P_tg(x) - P_tg(y)| \leq C \frac{d(x,y)^{\kappa}}{t^{\kappa/d_W}} \|g\|_{L^{\infty}(X,\mu)}.$$

This inequality is proved by Barlow for resistance spaces under the sGHKE.

For nested fractals, $wBE(\kappa)$ is satisfied with $\kappa = d_W - d_H$. In that case the value $d_W - d_H$ is optimal.

For the Sierpinski carpet satisfies $wBE(\kappa)$ with $\kappa = d_W - d_H$, however we conjecture that in fact the Sierpinski carpet satisfies $wBE(\kappa)$ with $\kappa > d_W - d_H$.

It will be a subject of future work to investigate whether the Sierpinski carpet has

$$\kappa = d_W - d_H + d_{tH} - 1 = d_W - d_H + \frac{\log 2}{\log 3}$$

[Strongly supported by numerical results: L.Rogers et al]

Main results on BV functions under the $wBE(\kappa)$ condition

Define

$$BV(X) := KS^{\lambda_1^{\#},1}(X) = B^{1,\alpha_1^{\#}}(X)$$

and for $f \in BV(X)$,

$$\operatorname{Var}(f) := \liminf_{r \to 0^+} \int_X \int_{B(x,r)} \frac{|f(y) - f(x)|}{r^{\lambda_1^{\#}} \mu(B(x,r))} \, d\mu(y) \, d\mu(x).$$

We show that for nested fractals and their products, BV(X) is dense in $L^1(X, \mu)$.

Locality property There is a constant C > 0 such that for every $f \in BV(X)$,

$$\sup_{r>0}\frac{1}{r^{d_H+d_W-\kappa}}\int_X\int_{B(y,r)}|f(x)-f(y)|d\mu(x)\,d\mu(y)\leq C\operatorname{Var}(f).$$

Co-area estimate

There exist constants c, C > 0 such that for every non-negative $f \in BV(X)$,

$$c\int_0^\infty {\operatorname{Var}}(1_{E_t(f)})dt \leq {\operatorname{Var}}(f) \leq C\int_0^\infty {\operatorname{Var}}(1_{E_t(f)})dt,$$

where $E_t(f) = \{x \in X : f(x) > t\}$. In particular, for $f \in BV(X)$ the sets $E_t(f) = \{x \in X : f(x) > t\}$ are of finite perimeter for almost every t > 0.

<u>Minkowski</u> There exists a constant C > 0 such that for every Borel set $E \subset X$,

$$P(E) \leq CC^*_{d_W-\kappa}(E),$$

where $C^*_{d_W-\kappa}(E)$ denotes the $(d_W - \kappa)$ -codimensional lower Minskowski content of E. In particular, any set whose measure-theoretic boundary has finite $(d_W - \kappa)$ -codimensional lower Minskowski content has finite perimeter

イロト 不得下 イヨト イヨト 二日

Sobolev inequality I Assume $d_W - \kappa < d_H$. Then $BV(X) \subset L^{1^*}(X, \mu)$ and there is C > 0 such that for every $f \in BV(X)$,

$$\|f\|_{L^{1^*}(X,\mu)} \leq C\operatorname{Var}(f),$$

where the critical Sobolev exponent $\mathbf{1}^*$ is given by the formula

$$rac{1}{1^*}=1-rac{d_W-\kappa}{d_H} \qquad \qquad 1^*=rac{d_H-d_W+\kappa}{d_H}.$$

Isoperimetric inequality

$$\mu({\sf E})^{rac{d_H-d_W+\kappa}{d_H}} \leq {\it CP}({\sf E}).$$

Sobolev inequality II Assume $\kappa = d_W - d_H > 0$. Then $BV(X) \subset L^{\infty}(X, \mu)$ and there exists a constant C > 0 such that for every $f \in BV(X)$, and a.e. $x, y \in X$

$$|f(x) - f(y)| \leq C \operatorname{Var}(f).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For nested fractals we do have $\kappa = d_W - d_H > 0$. Moreover, a set has finite perimeter if and only if it has finite boundary, $P(E) \sim #(\partial E)$.

Theorem (research in progress)

 $f \in BV$ iff ∇f is a "vector valued Radon measure".

This is understood in the distributional sense (Hinz, Rogers, Strichartz et al)

Corollary

- **(**) on the Vicsek set, any BV function is \mathbb{R}^1 -**BV** along each geodesic path.
- on the Sierpiński gasket, any BV function is discontinuous.

Figure: A part of an infinite, or unbounded, Vicsek set and a Sierpinski gasket.

23 / 23

(日) (同) (日) (日)