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Joint work with
Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke Rogers,
Nageswari Shanmugalingam.

Abstract: we introduce heat semigroup-based Besov classes for general Dirichlet
spaces, study quantitative regularization estimates for the heat semigroup in this
scale of spaces, and obtain a far reaching Lp-analogue, p ≥ 1, of the Sobolev
inequality that was proved for p = 2 by N. Varopoulos under the assumption of
ultracontractivity for the heat semigroup. The case p = 1 may yield isoperimetric
type inequalities and Bounded Variation (BV) function spaces.
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Motivation

Isoperimetric inequalities and BV functions, for Rn and manifolds, were studied by
Caccioppoli, De Giorgi, Federer, Ledoux, Miranda et al and more recently by
Ambrosio (related to Cheeger, Haj lasz, Heinonen, Koskela) et al in
non-smooth setting.

Besov and related spaces in DMMS and heat semi-group setting were studied by
Barlow, Bass, Hambly, Hinz, Hu, Jonsson, Grigoryan, Kumagai, Lau,
Pietruska-Pa luba, Triebel, Wallin, Zähle.

Bakry, Coulhon, Ledoux, Saloff-Coste: Sobolev inequalities in disguise,

1995
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Sobolev type inequalities for general Dirichlet forms

In Rn, n ≥ 2,

‖f ‖Lq(Rn) ≤ C‖ |∇f | ‖Lp(Rn), f ∈ C∞0 (Rn) (1)

1 ≤ p < n, q = np
n−p , and C depends on n and p.

For a measure space (X , µ) with a symmetric Dirichlet form E with domain F ,
N. Varopoulos proved in 1985 that a heat kernel upper bound of the type
pt(x, y) ≤ C

tn/2 , n > 2, implies the following Sobolev inequality

‖f ‖Lq(X ,µ) ≤ C
√
E(f , f ), f ∈ F , (2)

where q = 2n
n−2

.
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Note that the condition
pt(x, y) ≤ Ct−β

is possible to verify in many classical and fractal examples because it is equivalent
to the Nash inequality

‖f ‖2+2/β
L2(X ,µ) 6 CE(f , f )‖f ‖2/β

L1(X ,µ) (3)

by Carlen-Kusuoka-Stroock 1987.
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Theorem (Weak Sobolev and isoperimetric inequalities):
Let (X , µ, E,F) be a Dirichlet space. Let {Pt}t∈[0,∞) denote the Markovian
semigroup associated with (X , µ, E,F). Let p ≥ 1. Assume that Pt admits a
measurable heat kernel pt(x, y) satisfying, for some C > 0 and β > 0,
pt(x, y) ≤ Ct−β for µ× µ-a.e. (x, y) ∈ X × X , and for each t ∈

(
0,+∞

)
.

Let 0 < α < β. Let 1 ≤ p < β
α

. There exists a constant Cp,α0 such that

sup
s≥0

s µ ({x ∈ X : |f (x)| ≥ s})
1
q ≤ Cp,α‖f ‖p,α,

‖f ‖p,α := sup
t>0

t−α
(∫

X

∫
X
|f (x)− f (y)|ppt(x, y)dµ(x)dµ(y)

)1/p

.

where q = pβ
β−pα . Therefore, there exists a constant

Ciso =
C
α
β (α + β)

α+β
β

2βα
α
β

such that for every subset set E ⊂ X with 1E ∈ B1,α(X )

µ(E)
β−α
β ≤ Ciso‖1E‖1,α := CisoPα(E).
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Theorem (Strong Sobolev inequality):
Let (X , µ, E,F) be a Dirichlet space. Let {Pt}t∈[0,∞) denote the Markovian
semigroup associated with (X , µ, E,F). Let p ≥ 1. Assume that Pt admits a
measurable heat kernel pt(x, y) satisfying, for some C > 0 and β > 0,
pt(x, y) ≤ Ct−β for µ× µ-a.e. (x, y) ∈ X × X , and for each t ∈

(
0,+∞

)
.

Assume that there exist α > 0 and C > 0 such that for every f ∈ Lp(X , µ)

‖f ‖p,α ≤ C lim inf
t→0

t−α
(∫

X

∫
X
|f (x)− f (y)|ppt(x, y)dµ(x)dµ(y)

)1/p

,

where

‖f ‖p,α := sup
t>0

t−α
(∫

X

∫
X
|f (x)− f (y)|ppt(x, y)dµ(x)dµ(y)

)1/p

.

Then, if 0 < α < β and p < β
α

, there exists a constant Cp,α,β > 0 such that
for every f ∈ Lp(X , µ),

‖f ‖Lq(X ,µ) ≤ Cp,α,β‖f ‖p,α,

where q = pβ
β−pα .
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Locality in time

Lemma

Let p ≥ 1 and α ≥ 0. Then Bp,α(X ) ={
f ∈ Lp(X , µ) : lim sup

t→0
t−α

(∫
X

Pt(|f − f (y)|p)(y)dµ(y)

)1/p

< +∞
}
.

Moreover, if β > α, then Bp,β(X ) ⊂ Bp,α(X ). Furthermore, for f ∈ Bp,α(X ),
and for every t > 0, we have

‖f ‖p,α ≤
2

tα
‖f ‖Lp(X ,µ) + sup

s∈(0,t]
s−α

(∫
X

Ps(|f − f (y)|p)(y)dµ(y)

)1/p

.
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Triviality of some of the spaces Bp,α(X )
F = B2,1/2(X ) is dense in L2. Assume E(f , f ) = 0 only for constant f . Then,
any f ∈ Bp,α(X ) with 1 ≤ p ≤ 2 and α > 1/p is constant.

Theorem

Let p > 2. If f ∈ Bp,1/2(X ) ∩ F then there is Γ(f ) ∈ L1(X , µ) such that for
all g ∈ L∞(X , µ) ∩ F ,∫

X
gΓ(f )dµ = 2E(gf , f )− E(f 2, g).

Corollary

If Bp,1/2(X ) ∩F is dense in F for some p > 2, then E admits a carré du champ
operator.
Suppose that for all f ∈ F we have that f is constant whenever E(f , f ) = 0. If
E is regular and the energy measure νf is singular to µ for any non-constant
f ∈ F . Then Bp,1/2(X ) contains only constant functions when p > 2.
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Continuity of Pt on the Besov spaces

Theorem
Let 1 < p ≤ 2. There exists a constant Cp > 0 such that for every
f ∈ Lp(X , µ) and t ≥ 0

‖Pt f ‖p,1/2 ≤
Cp

t1/2
‖f ‖Lp(X ,µ).

In particular Pt : Lp(X , µ)→ Bp,1/2(X ) is bounded for t > 0.

Corollary

Let 2 ≤ p < +∞ and α > 1/2. If f ∈ Bp,α(X ) then E(f , f ) = 0.
Let 1 < p ≤ 2. Let L be the generator of E and Lp be the domain of L in
Lp(X , µ). Then

Lp ⊂ Bp,1/2(X )

and for every f ∈ Lp, ‖f ‖2
p,1/2 ≤ C‖Lf ‖Lp(X ,µ)‖f ‖Lp(X ,µ).

Sasha Teplyaev (UConn) BV functions and derivatives on fractals November 2019 ∗ Cornell 12 / 23



Besov spaces and critical exponents

α∗p(X ) = sup{α > 0 : Bp,α(X ) is dense in Lp(X , µ).}

α#
p (X ) = sup{α > 0 : Bp,α(X ) contains non-constant functions}.

1 Both p 7→ α∗p(X ) and p 7→ α#
p (X ) are non-increasing;

2 For 1 ≤ p ≤ 2 we have α#
p (X ) ≥ α∗p(X ) ≥ 1

2
;

If we assume that E(f , f ) = 0 implies f constant, then we have in addition
3 If 1 ≤ p ≤ 2 then α∗p(X ) ≤ α#

p (X ) ≤ 1
p ;

4 α∗2 (X ) = α#
2 (X ) = 1

2
;

5 For 2 ≤ p <∞ one has α∗p(X ) ≤ α#
p (X ) ≤ 1

2
;

Furthermore if E is regular and the energy measure νf for each non-constant
f ∈ F is singular to µ (as is the case on some fractals) we obtain

6 For p > 2 one has α∗p(X ) ≤ α#
p (X ) < 1

2
.

Theorem
For Riemannian manifolds, sub-Riemannian manifolds, or metric graphs one has
α∗1 (X ) = α#

1 (X ) = 1
2

, but for nested fractals or their products

α∗1 (X ) = α#
1 (X ) = dH−dtH +1

dW
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Topological-Hausdorff dimension:

dtH := 1 + inf(dH(∂O))

where the inf is taken over collections of open sets O that form a base of the
topology.

Compare to the topological dimension dt := 1 + inf(dt(∂O)) where the inf is
taken over collections of open sets O that form a base of the topology.
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Main examples

10 ROBERT S. STRICHARTZ AND ALEXANDER TEPLYAEV

Figure 2.2. A part of an infinite Sierpiński gasket.
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Figure 2.3. An illustration to the computation of the spectrum on the infi-
nite Sierpiński gasket. The curved lines show the graph of the function R(·),
the vertical axis contains the spectrum of σ(−∆Γ0) and the horizontal axis
contains the spectrum σ(−∆).

the preimages of 5 and 3 under the inverse iterations of R. In this case formula (2.14) is
the same as the formulas for eigenprojections in [41]. The illustration to the computation
of the spectrum in Theorem 2.3 is shown in Figure 2.3, where the graph of the function
R is shown schematically and the location of eigenvalues is denoted by small crosses. The
spectrum σ(−∆) is shown on the horizontal axis and the set of eigenvalues Σ0 of −∆Γ0 is
shown on the vertical axis.
A different infinite Sierpiński gasket fractafold can be constructed using two copies of an

infinite Sierpiński gasket with a boundary point, and joining these copies at the boundary.
This fractal first was considered in [2], and has a natural axis of symmetry between left and
right copies. Therefore we can consider symmetric and anti-symmetric functions with respect
to these symmetries. It was proved in [41] that the spectrum of the Laplacian restricted to
the symmetric part is pure point with a complete set of eigenfunctions with compact support.
For the anti-symmetric part the compactly supported eigenfunctions are not complete, and
it was proved in [31] that the Laplacian on Γ0 has a singularly continuous component in
the spectrum, supported on JR, of spectral multiplicity one. As a corollary of these and our
results we have the following proposition.

Figure: A part of an infinite, or unbounded, Vicsek set and a Sierpinski gasket.

dH = log N
log c , dtH = 1, α∗1 (X ) = α#

1 (X ) = dH−dtH +1
dW

= dH
dW

Figure: A part of an infinite, or unbounded, Sierpinski carpet, dtH − 1 = log 2
log 3
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Besov class via heat semigroup on Dirichlet spaces III:
BV functions and sub-Gaussian heat kernel estimates.

Let (X , d , µ) be a locally compact complete metric Radon measure space and

‖f ‖pKSλ,p(X ) := lim sup
r→0+

∫
X

∫
B(x,r)

|f (y)− f (x)|p

rλpµ(B(x, r))
dµ(y) dµ(x) < +∞.

The Lp–Korevaar-Schoen critical exponent is

λ#
p = sup{λ > 0 : KSλ,p(X ) contains non-constant functions}.
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GHKE

With a 1-Poincaré inequality and doubling, one has λ#
p = 1 for every p ≥ 1.

Note that, at the critical exponent λ#
2 = 1, one can construct a Dirichlet form

E(f ) ' ‖f ‖2
KS1,2(X )

with domain KS1,2(X ) by using a choice of a Cheeger differential structure. This
Dirichlet form is then strictly local and the intrinsic distance dE associated to E is
bi-Lipschitz equivalent to the original metric d .
At the critical exponent λ#

1 = 1, one has KS1,1(X ) = BV (X ) and

Var(f ) ' ‖f ‖KS1,1(X ).
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sGHKE

pt(x, y) ' t−dH/dW exp

(
−c
(d(x, y)dW

t

) 1
dW−1

)

λ#
2 =

dW

2

E(f ) ' ‖f ‖2

KS
dW

2
,2(X )

For nested fractals
λ#

1 = dH

is the Hausdorff dimension.
For the Sierpinski carpet we prove that

λ#
1 > dH − dtH + 1

and conjecture that in fact there is an equality. Here dtH is the
topological-Hausdorff dimension.
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Weak Bakry-Émery nonnegative curvature condition
We say that the weak Bakry-Émery non-negative curvature condition wBE(κ) is
satisfied if there exist a constant C > 0 and a parameter 0 < κ < dW such that
for every t > 0, g ∈ L∞(X , µ) and x, y ∈ X ,

|Ptg(x)− Ptg(y)| ≤ C
d(x, y)κ

tκ/dW
‖g‖L∞(X ,µ).

This inequality is proved by Barlow for resistance spaces under the sGHKE.

For nested fractals, wBE(κ) is satisfied with κ = dW − dH . In that case the
value dW − dH is optimal.

For the Sierpinski carpet satisfies wBE(κ) with κ = dW − dH , however we
conjecture that in fact the Sierpinski carpet satisfies wBE(κ) with κ > dW − dH .

It will be a subject of future work to investigate whether the Sierpinski carpet has

κ = dW − dH + dtH − 1 = dW − dH +
log 2

log 3

[Strongly supported by numerical results: L.Rogers et al]
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Main results on BV functions under the wBE(κ) condition

Define
BV (X ) := KSλ

#
1 ,1(X ) = B1,α#

1 (X )

and for f ∈ BV (X ),

Var(f ) := lim inf
r→0+

∫
X

∫
B(x,r)

|f (y)− f (x)|
rλ

#
1 µ(B(x, r))

dµ(y) dµ(x).

We show that for nested fractals and their products, BV (X ) is dense in L1(X , µ).
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Locality property There is a constant C > 0 such that for every f ∈ BV (X ),

sup
r>0

1

rdH +dW−κ

∫
X

∫
B(y ,r)

|f (x)− f (y)|dµ(x) dµ(y) ≤ CVar(f ).

Co-area estimate
There exist constants c,C > 0 such that for every non-negative f ∈ BV (X ),

c
∫ ∞

0

Var(1Et(f ))dt ≤ Var(f ) ≤ C
∫ ∞

0

Var(1Et(f ))dt,

where Et(f ) = {x ∈ X : f (x) > t}. In particular, for f ∈ BV (X ) the sets
Et(f ) = {x ∈ X : f (x) > t} are of finite perimeter for almost every t > 0.

Minkowski There exists a constant C > 0 such that for every Borel set E ⊂ X ,

P(E) ≤ CC∗dW−κ(E),

where C∗dW−κ(E) denotes the (dW − κ)-codimensional lower Minskowski content
of E . In particular, any set whose measure-theoretic boundary has finite
(dW − κ)-codimensional lower Minskowski content has finite perimeter
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Sobolev inequality I Assume dW − κ < dH . Then BV (X ) ⊂ L1∗(X , µ) and
there is C > 0 such that for every f ∈ BV (X ),

‖f ‖L1∗ (X ,µ) ≤ CVar(f ),

where the critical Sobolev exponent 1∗ is given by the formula

1

1∗
= 1−

dW − κ
dH

1∗ =
dH − dW + κ

dH
.

Isoperimetric inequality

µ(E)
dH−dW +κ

dH ≤ CP(E).

Sobolev inequality II
Assume κ = dW − dH > 0. Then BV (X ) ⊂ L∞(X , µ) and there exists a
constant C > 0 such that for every f ∈ BV (X ), and a.e. x, y ∈ X

|f (x)− f (y)| ≤ CVar(f ).
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For nested fractals we do have κ = dW − dH > 0. Moreover, a set has finite
perimeter if and only if it has finite boundary, P(E) ∼ #(∂E).

Theorem (research in progress)

f ∈ BV iff ∇f is a “vector valued Radon measure”.

This is understood in the distributional sense (Hinz, Rogers, Strichartz et al)

Corollary

1 on the Vicsek set, any BV function is R1-BV along each geodesic path.

2 on the Sierpiński gasket, any BV function is discontinuous.
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Figure 2.3. An illustration to the computation of the spectrum on the infi-
nite Sierpiński gasket. The curved lines show the graph of the function R(·),
the vertical axis contains the spectrum of σ(−∆Γ0) and the horizontal axis
contains the spectrum σ(−∆).

the preimages of 5 and 3 under the inverse iterations of R. In this case formula (2.14) is
the same as the formulas for eigenprojections in [41]. The illustration to the computation
of the spectrum in Theorem 2.3 is shown in Figure 2.3, where the graph of the function
R is shown schematically and the location of eigenvalues is denoted by small crosses. The
spectrum σ(−∆) is shown on the horizontal axis and the set of eigenvalues Σ0 of −∆Γ0 is
shown on the vertical axis.
A different infinite Sierpiński gasket fractafold can be constructed using two copies of an

infinite Sierpiński gasket with a boundary point, and joining these copies at the boundary.
This fractal first was considered in [2], and has a natural axis of symmetry between left and
right copies. Therefore we can consider symmetric and anti-symmetric functions with respect
to these symmetries. It was proved in [41] that the spectrum of the Laplacian restricted to
the symmetric part is pure point with a complete set of eigenfunctions with compact support.
For the anti-symmetric part the compactly supported eigenfunctions are not complete, and
it was proved in [31] that the Laplacian on Γ0 has a singularly continuous component in
the spectrum, supported on JR, of spectral multiplicity one. As a corollary of these and our
results we have the following proposition.

Figure: A part of an infinite, or unbounded, Vicsek set and a Sierpinski gasket.
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