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outline:

Spectral analysis on fractals:

I Weak Uncertainty Principle (Okoudjou, Saloff-Coste, Strichartz, T.,
2008)

I Laplacians on fractals with spectral gaps gaps have nicer Fourier series
(Strichartz, 2005)

I Bohr asymptotics on infinite Sierpinski gasket (Chen, Molchanov, T.,
2015).

I Singularly continuous spectrum of a self-similar Laplacian on the
half-line (Chen, T., 2016).

I Spectral zeta function (Derfel-Grabner-Vogl, Steinhurst-T.,
Chen-T.-Tsougkas, Kajino, 2007–2017)

Algebraic applications: spectrum of the Laplacian on the Basilica Julia
set (with Rogers, Brzoska, George, Jarvis arXiv:1908.10505 ).

selected technical details (if time permits)

This is a part of the broader program to develop probabilistic, spectral and
vector analysis on singular spaces by carefully building approximations by
graphs or manifolds.
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abstract

The talk will describe how spectral theory, geometry of graphs, and dynamical
systems are used to analyze spectral properties of the random walk generator on
finitely ramified self-similar graphs and fractals. In particular, pure point or
singular continuous spectrum appears naturally for such graphs. The standard
examples include the Sierpinski triangle, the Vicsek tree, and the Schreier graphs
of the Hanoi self-similar group studied by Grigorchuk and Sunic. A more
complicated example is related to the Basilica Julia set of the polynomial z2 − 1
and its Iterated Monodromy Group, defined by Nekrashevych. Its spectrum was
investigated numerically by Strichartz et al and analytically in a joint work with
Luke Rogers and several students at UConn.
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Spectral analysis on fractals

A part of an infinite Sierpiński gasket.
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Figure: An illustration to the computation of the spectrum on the infinite

Sierpiński gasket. The curved lines show the graph of the function R(·).

Theorem (Rammal, Toulouse 1983, Béllissard 1988,
Fukushima, Shima 1991, T. 1998, Quint 2009)

On the infinite Sierpiński gasket the spectrum of the Laplacian consists of a dense
set of eigenvalues R−1(Σ0) of infinite multiplicity and a singularly
continuous component of spectral multiplicity one supported on R−1(JR).
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To simulate a kind of magnetic field in a fractal environment we study the tight-binding
Schrodinger equation on a Sierpinski gasket. The magnetic field is represented by the introduction
of a phase onto each hopping matrix element. The energy levels can then be determined by either
direct diagonalization or recursive methods. The introduction of a phase breaks all the degeneracies
which exist in and dominate the zero-field solution. The spectrum in the field may be viewed as
considerably broader than the spectrum with no field. A novel feature of the recursion relations is
that it leads to a power-law behavior of the escape rate. Green's-function arguments suggest that a
majority of the eigenstates are truly extended despite the finite order of ramification of the fractal
lattice.

I. INTRODUCTION

Hamiltonians defined on fractal surfaces have been the
subject of many papers lately. ' In particular, Domany
et al. ' have given a detailed analysis of the spectrum of
eigehstates of the Schrodinger equation defined on a two-
dimensional (2D) Sierpinski gasket. This calculation is
based upon exact decimination techniques which provide
a powerful semianalytical method of finding detailed
properties of the Hamiltonian.

Problems of fractal lattices are reminiscent of (but very
much simpler than) those which are conventionally stud-
ied for electron localization. For this situation the locali-
zation. can be rather fully understood. One learns, for ex-
ample, that, although there are a few extended states,
most states are very highly localized, on finitely ramified
fractals. Furthermore, almost all the states have a very
high degree of degeneracy. Of course, the observed locali-
zation phenomena on these systems are fundamentally
different from Anderson localization. For one thing,
these lattices give a finite order of ramification. For
another, if one chooses to describe the self-similar struc-
ture by configurational disorder (e.g., by cutting some
bonds) then the resulting "disorder" is highly correlated.
Nonetheless, these systems form interesting test cases
which are worth studying.

In this paper we study magnetic field effects on elec-
tronic motion through a 2D Sierpinski gasket (Fig. 1).
Following Alexander, we describe the motion by giving
an electronic wave function at each mode of the lattice,

The tight-binding Hamiltonian fixes the hopping ma-
trix element between neighboring sites to have a magni-
tude

~ f ~

which is the same for all nearest-neighbor sites
and zero otherwise. A magnetic field is defined by giving
the value of the phase on each bond so that the sum of
phases along a closed path is the magnetic flux enclosed

by the path.
The very simplest model is chosen by taking all bonds

to have exactly the same phase. We make this choice by
allowing all bonds in the direction of the arrows in Fig. 1

to have a matrix element f= foe'~, and all bonds opposite
to the arrows to have f=foe '~, with fo real and posi-
tive. Although this choice gives a natural bond pattern,
the magnetic flux pattern is far less natural. All the ele-
mentary upward-pointing triangles, like those labeled 3 in
the figure, have the very same flux, N+ ——3P. However,
using the same convention for the sign of the flux, the
smallest downward-pointing triangles labeled 8 have flux
@~———3tb, while larger downward-pointing triangles have
larger negative flux, for example, Nc ———6P. Hence, the
magnetic field pattern studied is quite nontrivial.

I C II
FIG. 1. Fragment of the Sierpinski gasket. The phase of the

hopping matrix is equal to P in the direction of the arrow and
—P otherwise.

31 1388 1985 The American Physical Society
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Weak Uncertainty Principle (Kasso Okoudjou, Laurent
Saloff-Coste, T., 2008)
The R1 Heisenberg Uncertainty Principle is equivalent, if ‖f ‖L2 = 1, to

(∫

R

∫

R
|x − y |2|f (x)|2 |f (y)|2 dx dy

)
·
(∫

R
|f ′(x)|2 dx

)
>

1

8

On a metric measure space (K , d , µ) with an energy form E
a weak uncertainty principle

Varγ(u) E(u, u) > C (1)

holds for u ∈ L2(K)
⋂

Dom(E)

Varγ(u) =

∫∫

K×K
d(x, y)γ |u(x)|2 |u(y)|2 dµ(x) dµ(y). (2)

provided either that d is the effective resistance metric, or some of the suitable
Poincare inequalities are satisfied.
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Laplacians on fractals with spectral gaps gaps have nicer
Fourier series (Robert Strichartz, 2005)

If the Laplacian has an infinite sequence of exponentially large spectral gaps and
the heat kernel satisfies sub-Gaussian estimates, then the partial sums of Fourier
series (spectral expansions of the Laplacian) converge uniformly along certain
special subsequences.

U.Andrews, J.P.Chen, G.Bonik, R.W.Martin, T.,
Wave equation on one-dimensional fractals with spectral decimation.
J. Fourier Anal. Appl. 23 (2017)
http://teplyaev.math.uconn.edu/fractalwave/

An introduction given in 2007:
http://www.math.uconn.edu/~teplyaev/gregynog/AT.pdf
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Half-line examplet -t t t t t t t t t- - - - - - - - - -� � � � � � � � �
1 q p p q q p q p p q p q q p p q q p

Transition probabilities in the pq random walk. Here p ∈ (0, 1) and q = 1− p.

(∆pf )(x) =





f (0)− f (1), if x = 0

f (x)− qf (x − 1)− pf (x + 1), if 3−m(x)x ≡ 1 (mod 3)

f (x)− pf (x − 1)− qf (x + 1), if 3−m(x)x ≡ 2 (mod 3)

Theorem (J.P.Chen, T., 2016)

If p 6= 1
2

, the Laplacian ∆p on `2(Z+) has purely singularly continuous
spectrum. The spectrum is the Julia set, a topological Cantor set of Lebesgue

measure zero, of the polynomial R(z) =
z(z2 − 3z + (2 + pq))

pq

This is a simple, possibly the simplest, quasi-periodic example related to the
recent results of A.Avila, D.Damanik, A.Gorodetski, S.Jitomirskaya, Y.Last,
B.Simon et al.
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Bohr asymptotics

For 1D Schödinger operator

Hψ = −ψ′′ + V (x)ψ, x ≥ 0 (3)

if V (x)→ +∞ as x → +∞ then (H. Weyl), the spectrum of H in
L2([0,∞), dx) is discrete and, under some technical conditions,

N(λ,V ) := #{λi (H) ≤ λ} ∼ 1

π

∫ ∞

0

√
(λ− V (x))+ dx. (4)

This is known as the Bohr’s formula. It can be generalized for Rn.
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Theorem (Fractal Bohr’s formula (Joe Chen, Stanislav Molchanov, T.,
J. Phys. A: Math. Theor. (2015)))

On infinite Sierpinski-type fractafolds, under mild assumptions,

lim
λ→∞

N(V , λ)

g(V , λ)
= 1, (5)

where

g(V , λ) :=

∫

K∞

[
(λ− V (x))+

]ds/2 G
(

1

2
log(λ− V (x))+

)
µ∞(dx), (6)

where G is the Kigami-Lapidus periodic function, obtained via a renewal theorem.
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Spectral zeta function

Theorem. (Derfel-Grabner-Vogl, Steinhurst-T., Chen-T.-Tsougkas, Kajino
(2007–2017)) For a large class of finitely ramified symmetric fractals, which
includes the Sierpiński gaskets, and may include the Sierpiński carpets, the
spectral zeta function

ζ(s) =
∑

λ
s/2
j

has a meromorphic continuation from the half-pain Re(s) > dS to C. Moreover,
all the poles and residues are computable from the geometric data of the fractal.
Here λj are the eigenvalues if the unique symmetric Laplacian.

Example: ζ(s) is the Riemann zeta function up to a trivial factor in the case
when our fractal is [0, 1].

In more complicated situations, such as the Sierpiński gasket, there are
infinitely many non-real poles, which can be called complex spectral
dimensions, and are related to oscillations in the spectrum.
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ds

dR

= log 9
log 5

= log 4
log 5

✻

0 dR 1 ds

❣
❣
❣
❣
❣
❣
❣

✉
✉
✉
✉
✉
✉
✉

❣
❣
❣
❣
❣
❣
❣

✲

Poles (white circles) of the spectral zeta function of the Sierpiński gasket.
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Spectral Analysis of the Basilica Graphs (with Luke
Rogers, Toni Brzoska, Courtney George, Samantha Jarvis)

The question of existence of groups with intermediate growth, i.e.
subexponential but not polynomial, was asked by Milnor in 1968 and
answered in the positive by Grigorchuk in 1984. There are still open questions in
this area, and a complete picture of which orders of growth are possible, and
which are not, is missing.

The Basilica group is a group generated by a finite automation acting on the
binary tree in a self-similar fashion, introduced by R. Grigorchuk and A. Zuk in
2002, does not belong to the closure of the set of groups of subexponential
growth under the operations of group extension and direct limit.

In 2005 L. Bartholdi and B. Virag further showed it to be amenable,
making the Basilica group the 1st example of an amenable but not
subexponentially amenable group (also “Münchhausen trick” and
amenability of self-similar groups by V.A. Kaimanovich).
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The basilica Julia set, the Julia set of z2 − 1 and the limit set of the basilica
group of exponential growth (Grigorchuk, Żuk, Bartholdi, Virág, Nekrashevych,

Kaimanovich, Nagnibeda et al.).
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In 2005, V. Nekrashevych described the Basilica as the iterated
monodromy group, and there exists a natural way to associate it to the Basilica
fractal (Nekrashevych+T., 2008).

In Schreier graphs of the Basilica group (2010), Nagnibeda et al. classified
up to isomorphism all possible limits of finite Schreier graphs of the Basilica group.

In Laplacians on the Basilica Julia set (2010), L. Rogers+T. constructed
Dirichlet forms and the corresponding Laplacians on the Basilica fractal in two
different ways: by imposing a self-similar harmonic structure and a graph-directed
self-simliar structure on the fractal.

In 2012-2015, Dong, Flock, Molitor, Ott, Spicer, Totari and Strichartz
provided numerical techniques to approximate eigenvalues and eigenfunctions on
families of Laplacians on the Julia sets of z2 + c .

Sasha Teplyaev (UConn) Spectral analysis on self-similar graphs and fractals February 2020 ∗ Stony Brook 16 / 17



Spectral Analysis of the Basilica Graphs

Basilica Julia Set and the Schreier graph Γ4

pictures taken from paper by Nagnibeda et. al.
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Spectral Analysis of the Basilica Graphs

Replacement Rule and the Graphs Gn
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Spectral Analysis of the Basilica Graphs

Distribution of Eigenvalues, Level 13
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Spectral Analysis of the Basilica Graphs

One can define a Dirichlet to Neumann map for the two boundary points
of the graphs Gn. One can construct a dynamical system to determine
these maps (which are two by two matrices). The dynamical system allows
us to prove the following.

Theorem

In the Hausdorff metric, lim sup
n→∞

σ(L(n)) has a gap that contains the

interval (2.5, 2.8).

Theorem (arXiv:1908.10505)

In the Hausdorff metric, lim sup
n→∞

σ(L(n)) has infinitely many gaps.
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Spectral Analysis of the Basilica Graphs

Infinite Blow-ups of Gn

Definition

Let {kn}n∈N be a strictly increasing subsequence of the natural numbers.
For each n, embed Gkn in some isomorphic subgraph of Gkn+1 . The
corresponding infinite blow-up is G∞ := ∪n≥0Gkn .

Assumption

The infinite blow-up G∞ satisfies:

For n ≥ 1, the long path of Gkn−1 is embedded in a loop γn of Gkn .

Apart from lkn−1 and rkn−1 , no vertex of the long path can be the
3, 6, 9 or 12 o’clock vertex of γn.

The only vertices of Gkn that connect to vertices outside the graph
are the boundary vertices of Gkn .
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Spectral Analysis of the Basilica Graphs
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Spectral Analysis of the Basilica Graphs

Theorem

(1) σ(L(kn)|`2
a,kn,γn

) = σ(L
(jn)
0 ).

(2) The spectrum of L(∞) is pure point. The set of eigenvalues of L(∞) is

⋃

n≥0

σ(L
(jn)
0 ) =

⋃

n≥0

c−1
jn
{0},

where the polynomials cn are the characteristic polynomials of L
(n)
0 , as

defined in the previous proposition.
(3) Moreover, the set of eigenfunctions of L(∞) with finite support is
complete in `2.
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TECHNICAL DETAILS

1



Fix p, q>0, p+q=1, and define probabilistic Laplacians ∆n on the segments
[0, 3n] of Z+ inductively as a generator of the random walks:

0 1u u
- �

1 1

0 1 3u u u u
- - -� � �

1 q p p q 1

0 1 3 6 9u u u u u u u u u u
- - - - - - - - -� � � � � � � � �

1 q p p q q p q p p q p q q p p q 1

0 3n 2(3n) 3n+1u q q qq q qq q qu u u
- - -� � �

1 q p p q 1

and let ∆ = lim
n→∞

∆n be the corresponding probabilistic Laplacian on Z+.

2



If z 6=−1± p and R(z)=z(z2+3z+2+pq)/pq, then
R(z) ∈ σ(∆n)⇐⇒ z ∈ σ(∆n+1)

-60−2

−2

−1± p

s ss

Theorem (Joe P. Chen and T., JMP 2016). σ(∆) = JR, the Julia set
of R(z).

If p=q, then σ(∆)=[−2, 0], spectrum is a.c.
If p 6= q, then σ(∆) is a Cantor set of Lebesgue measure zero, spectrum is

singularly continuous.
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U.Andrews, J.P.Chen, G.Bonik, R.W.Martin, A.Teplyaev, Wave equation on
one-dimensional fractals with spectral decimation. J. Fourier Anal.
Appl. 23 (2017) 994–1027. http://teplyaev.math.uconn.edu/fractalwave/

Bellissard, Geronimo, Volberg, Yuditskii, Are they limit periodic? Complex
analysis and dynamical systems II, 43–53, Contemp. Math., 382, Israel Math. Conf.
Proc., Amer. Math. Soc., Providence, RI, 2005.
(Reviewed by Maxim S. Derevyagin)

Bellissard, Renormalization group analysis and quasicrystals. Ideas and
methods in quantum and statistical physics (Oslo, 1988), 118–148, Cambridge Univ.
Press, Cambridge, 1992.
Barnsley, Geronimo and Harrington, Almost periodic Jacobi matrices as-
sociated with Julia sets for polynomials. Comm. Math. Phys. 99 (1985),
303–317.
Bellissard, Bessis and Moussa, Chaotic states of almost periodic Schrodinger
operators. Phys. Rev. Lett. 49 (1982), 701–704.
Bellissard and Simon, Cantor spectrum for the almost Mathieu equation
J. Funct. Anal. 48 (1982), 408–419.
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There are uncountably many “random” self-similar Laplacians ∆ on Z:
For a sequence K = {kj}∞j=1, kj ∈ {0, 1, 2}, let

Xn = −
n∑
j=1

kj3
j

and ∆n is a probabilistic Laplacian on [Xn, Xn+3n]:

Xn Xn+3n−1 Xn+2(3n−1) Xn+3nu r r rr r rr r ru u u
- - -� � �

1 q p p q 1

In the previous example kj = 0 for all j.

Theorem.
For any sequence K we have σ(∆) = JR. The same is true for the Dirichlet
Laplacian on Z+ (when kj ≡ 0).
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R. Grigorchuk and Z. Sunik, Asymptotic aspects of Schreier graphs and Hanoi
Towers groups.
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Sierpiński 3-graph Sierpiński 4-graph
(Hanoi Towers-3 group) (standard)
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These three polynomials are conjugate:

Sierpiński 3-graph (Hanoi Towers-3 group): f(x) = x2 − x− 3
f(3) = 3, f ′(3) = 5

Sierpiński 4-graph, “adjacency matrix” Laplacian: P (λ) = 5λ− λ2

P (0) = 0, P ′(0) = 5

Sierpiński 4-graph, probabilistic Laplacian: R(z) = 4z2 + 5z
R(0) = 0, R′(0) = 5
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Theorem. Eigenvalues and eigenfunctions on the
Sierpiński 3-graphs and Sierpiński 4-graphs are in
one-to-one correspondence, with the exception of the
eigenvalue z = −3

2
for the 4-graphs.

b
��bTTb ←−

4z2 + 5z

b
��bTTb
b
��bTTbb��bTTb

b
��bTTb ←−

4
3
z2 + 8

3
z
bs bb

rr ←−
2z2 + 4z

c rr
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b
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��bTTb
b
��bTTbb��bTTb

Sierpiński 3-graph Sierpiński 4-graph
(Hanoi Towers-3 group) (standard)
R(z) = 2z2 + 4z R(z) = 4

3
z2 + 8

3
z
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Let H and H0 be Hilbert spaces, and U : H0 → H be an isometry.

Definition. We call an operator H spectrally similar to an operator H0 with
functions ϕ0 and ϕ1 if

U∗(H − z)−1U = (ϕ0(z)H0 − ϕ1(z))−1

In particular, if ϕ0(z) 6= 0 and R(z) = ϕ1(z)/ϕ0(z), then

U∗(H − z)−1U =
1

ϕ0(z)
(H −R(z))−1.

If H =

(
S X̄
X Q

)
then

S − zI0 − X̄(Q− zI1)
−1X = ϕ0(z)H0 − ϕ1(z)I0

Theorem (Malozemov and T.). If ∆ is the graph Laplacian on a self-similar
symmetric infinite graph, then

JR ⊆ σ(∆∞) ⊆ JR ∪D∞
where D∞ is a discrete set and JR is the Julia set of the rational function R.
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J. Béllissard, Renormalization group analysis and quasicrystals, Ideas and methods
in quantum and statistical physics (Oslo, 1988). Cambridge Univ. Press, 1992.

14



�
�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

2

−1

−1

1

z = 3
2

t
t t
t �

�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

1
2

1
2

1
2

1
2

1
2

1
2

2 −1

−1

−1 1

z = 3
4

t

t t

t

�
�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

2

1

−1

−1

1

−1

−1

z = 3
2
t t
t t
t t
t �

�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T
�
�
�
�

T
T
T
T

�
�
�
�

T
T
T
T

−11

1

−1

−1

1

z = 5
4

15



Let ∆ be the probabilistic Laplacian (generator of a simple random walk) on the
Sierpiński lattice. If z 6= 3

2
, 5

4
, 1

2
, and R(z) = z(4z + 5), then

R(z) ∈ σ(∆)⇐⇒ z ∈ σ(∆)

σ(∆) = JR
⋃

D

where D
def
= { 3

2
}⋃

( ∞⋃
m=0

R−m{ 3
4
}
)

and JR is the Julia set of R(z).

-
6
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There are uncountably many nonisomorphic
Sierpiński lattices.
Theorem (T). The spectrum of ∆ is pure point.
Eigenfunctions with finite support are complete.
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Let ∆(0) be the Laplacian with zero (Dirichlet) boundary condition at ∂L. Then

the compactly supported eigenfunctions of ∆(0) are not complete (eigenvalues in
E is not the whole spectrum).
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Let ∂L(0) be the set of two points adjacent to ∂L and ω
(0)
∆ be the spectral

measure of ∆(0) associated with 1
∂L(0). Then supp(ω

(0)
∆ ) = JR has Lebesgue

measure zero and

d(ω
(0)
∆ ◦R1,2)

dω
(0)
∆

(z) =
(8z + 5)(2z + 3)

(2z + 1)(4z + 5)
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Three contractions F1, F2, F3 : R1 → R1, Fj(x) = 1
3
(x+pj), with fixed

points pj = 0, 1
2
, 1. The interval I=[0, 1] is a unique compact set such that

I =
⋃

j=1, 2, 3

Fj(I)

The boundary of I is ∂I = V0 = {0, 1} and the discrete approxima-

tions to I are Vn =
⋃

j=1, 2, 3

Fj(Vn−1) =
{
k
3n

}3n

k=0

V0=∂I : x x
?

��������)

PPPPPPPPq

V1 : x x x x
?

��������)

PPPPPPPPq

V2 : x x x x x x x x x x
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Definition. The discrete Dirichlet (energy) form on Vn is

En(f) =
∑

x,y∈Vn
y∼x

(f (y)−f (x))2

and the Dirichlet (energy) form on I is E(f) = lim
n→∞

3nEn(f) =
∫ 1

0 |f ′(x)|2dx

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition. 3En+1(f) > En(f) and 3En+1(h) = En(h) = 3−nE(h)
for a harmonic h.

Proposition. The Dirichlet (energy) form on I is self-similar in the sense that

E(f) = 3
∑

j = 1, 2, 3

E(f◦Fj)
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Definition. The discrete Laplacians on Vn are

∆nf (x) = 1
2

∑

y∈Vn
y∼x

f (y)−f (x), x∈Vn\V0

and the Laplacian on I is ∆f (x) = lim
n→∞

9n∆nf (x) = f ′′(x)

Gauss–Green (integration by parts) formula:

E(f) = −
∫ 1

0

f∆fdx+ ff ′
∣∣∣
1

0

Spectral asymptotics: Let ρ(λ) be the eigenvalue counting function of
the Dirichlet or Neumann Laplacian ∆:

ρ(λ) = #{j : λj < λ}.
Then

lim
λ→∞

ρ(λ)

λds/2
=

1

π
where ds = 1 is the spectral dimension.
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Definition. The spectral zeta function is ζ∆(s) =
∑

λj 6=0

(−λj
)−s/2

Its poles are the complex spectral dimensions.

Let R(z) be a polynomial of degree N such that its Julia set JR ⊂ (−∞, 0],
R(0) = 0 and c = R′(0) > 1.

Definition. The zeta function of R(z) for Re(s) > dR = 2 logN
log c

is

ζz0
R

(s) = lim
n→∞

∑

z∈R−n{z0}
(−cnz)−s/2 =

∑
λ
−s/2
j

Theorem. ζz0
R

(s) =
f1(s)

1−Nc−s/2 + fz02 (s), where f1(s) and fz02 (s) are ana-

lytic for Re(s)>0. If JR is totally disconnected, then this meromorphic continuation
extends to Re(s)>−ε, where ε>0.

In the case of polynomials this theorem has been improved by Grabner et al.
23



dR ∈ the poles of ζz0
R
⊆ {2 logN+4inπ

log c
:n∈Z}

0 -−ε dR
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Theorem. ζ∆(s) = ζ0
R

(s) where R(z) = z(4z2+12z+9).

The Riemann zeta function ζ(s) satisfies ζ(s) = πsζ0
R

(s) The only complex
spectral dimension is the pole at s = 1.

A sketch of the proof: If z 6=− 1
2
,−3

2
, then

R(z) ∈ σ(∆n) ⇐⇒ z ∈ σ(∆n+1)

and so ζ∆(s) = ζ0
R

(s) since the eigenvalues λj of ∆ are limits of the eigenvalues
of 9n∆n.

Also λj=−π2j2 and so

ζ∆(s) =
∞∑

j=1

(
π2j2

)−s/2
= π−sζ(s)

where ζ(s) is the Riemann zeta function. Q.E.D.

ζ(s) = πslim
n→∞

∑

z∈R−n{0}
z 6=0

(−9nz
)−s/2
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Definition. ∆µ is µ–Laplacian if

E(f) =

∫ 1

0

|f ′(x)|2dx=−
∫ 1

0

f∆µfdµ+ ff ′
∣∣1
0
.

Definition. A probability measure µ is self-similar with weights m1,m2,m3

if µ=
∑

j=1, 2, 3

mjµ◦Fj.

Proposition. ∆µf (x)=f ′′
µ

= lim
n→∞

(
1+

2
pq

)n
∆nf (x).

∆nf( k
3n

)=

{
pf(k−1

3n
) + qf(k+1

3n
)− f( k

3n
)

qf(k−1
3n

) + pf(k+1
3n

)− f( k
3n

)

where m1=m3, p= m2
m1+m2

, q= m1
m1+m2

, and

x x x x
- - -� � �

1

m1 m2 m3

q p p q 1

x x x x x x x x x x
- - - - - - - - -� � � � � � � � �

1 q p p q q p q p p q p q q p p q 1
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Spectral asymptotics: If ρ(λ) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian ∆µ, then

0 < lim inf
λ→∞

ρ(λ)

λds/2
6 lim sup

λ→∞

ρ(λ)

λds/2
<∞

where the spectral dimension is

ds=
log 9

log(1+
2
pq

)
6 1.

All the inequalities are strict if and only if p 6= q.

Proposition. R(z) ∈ σ(∆n) ⇐⇒ z ∈ σ(∆n+1)

where z 6=−1±p and R(z)=z(z2+3z+2+pq)/pq.

Note that R′(0)=1 + 2
pq

, and ds=dR.

Theorem. ζ∆µ(s)=ζ
0
R

(s)
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Three contractions F1, F2, F3 : R2 → R2,
Fj(x) = 1

2
(x+pj), with fixed points p1, p2, p3.

p1

p2

p3

........................... ...................................................... ........................... ......................................................
........................... ...................................................... ........................... ...................................................... ........................... ......................................................

........................... ......................................................

........................... ...................................................... ........................... ......................................................
........................... ...................................................... ........................... ...................................................... ........................... ......................................................

........................... ...................................................... ........................... ...................................................... ........................... ......................................................
........................... ......................................................

........................... ...................................................... ........................... ......................................................
........................... ......................................................

........................... ...................................................... ........................... ......................................................
........................... ...................................................... ........................... ...................................................... ........................... ......................................................

........................... ......................................................

........................... ...................................................... ........................... ......................................................
........................... ......................................................

The Sierpiński gasket is a unique compact setS such that

S =
⋃

j=1, 2, 3

Fj(S)
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Definition. The boundary of S is

∂S = V0 = {p1, p2, p3}
and discrete approximations to S are

Vn =
⋃

j=1, 2, 3

Fj(Vn−1)

V0 :

y y
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Definition. The discrete Dirichlet (energy) form on Vn is

En(f) =
∑

x,y∈Vn
y∼x

(f (y)−f (x))2

and the Dirichlet (energy) form on S is

E(f) = lim
n→∞

(
5
3

)n
En(f)

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition. 5
3
En+1(f) > En(f)

5
3
En+1(h)=En(h)=

(
5
3

)−n
E(h) for a harmonic h.

Theorem (Kigami). E is a local regular Dirichlet form on S which is self-similar
in the sense that

E(f) = 5
3

∑

j = 1, 2, 3

E(f◦Fj)
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Definition. The discrete Laplacians on Vn are

∆nf (x) = 1
4

∑

y∈Vn
y∼x

f (y)−f (x), x∈Vn\V0

and the Laplacian on S is

∆µf (x) = lim
n→∞

5n∆nf (x)

if this limit exists and ∆µf is continuous.

Gauss–Green (integration by parts) formula:

E(f) = −
∫

S

f∆µfdµ+
∑

p∈∂S
f(p)∂nf(p)

where µ is the normalized Hausdorff measure, which is self-similar with weights
1
3
, 1

3
, 1

3
:

µ = 1
3

∑

j = 1, 2, 3

µ◦Fj.
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Spectral asymptotics: If ρ(λ) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian ∆µ, then

0 < lim inf
λ→∞

ρ(λ)

λds/2
< lim sup

λ→∞

ρ(λ)

λds/2
<∞

where the spectral dimension is

1 < ds = log 9
log 5

< 2.

Proposition. R(z) ∈ σ(∆n) ⇐⇒ z ∈ σ(∆n+1) where z 6=− 1
2
,−3

4
,−5

4
and R(z) = z(5 + 4z).

Theorem (Fukushima, Shima). Every eigenvalue of ∆µ has a form

λ=5mlim
n→∞

5nR−n(z0)

where R−n(z0) is a preimage of z0 = −3
4
,−5

4
under the n-th iteration power

of the polynomial R(z). The multiplicity of such an eigenvalue is C13
m + C2.
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Theorem. Zeta function of the Laplacian on the Sierpiński gasket is

ζ∆µ(s) = 1
2
ζ

3
4

R
(s)

(
1

5s/2−3
+ 3

5s/2−1

)
+ 1

2
ζ

5
4

R
(s)

(
3·5−s/2
5s/2−3

− 5−s/2
5s/2−1

)

ds

dR

= log 9
log 5

= log 4
log 5

6

0 dR 1 ds
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Definition. If L is a fractal string, that is, a disjoint collection of intervals of
lengths lj, then its geometric zeta function is ζL(s) =

∑
lsj .

Theorem (Lapidus). If A=− d2

dx2
is a Neumann or Dirichlet Laplacian on L,

then ζA(s) = π−sζ(s)ζL(s).

Example: Cantor self-similar fractal string.

If L is the complement of the middle third Cantor set in [0, 1], then the complex
spectral dimensions are 1 and { log 2+2inπ

log 3
: n∈Z},

ζL(s) = 1

1−2·3−s, ζA(s) = ζ(s) π−s
1−2·3−s
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Definition. A post critically finite (p.c.f.) self-similar set F is a compact con-
nected metric space with a finite boundary ∂F ⊂ F and contractive injections
ψi :F →F such that

F = Ψ(F ) =
k⋃

i=1

ψi(F )

and
ψv(F )

⋂
ψw(F ) ⊆ ψv(∂F )

⋂
ψw(∂F ),

for any two different words v and w of the same length. Here for a finite word
w ∈ {1, . . . , k}m we define ψw = ψw1 ◦ . . . ◦ ψwm.

We assume that ∂F is a minimal such subset of F . We call ψw(F ) an m-cell.
The p.c.f. assumption is that every boundary point is contained
in a single 1-cell.

Theorem (Kigami, Lapidus). The spectral dimension of the Laplacian ∆µ is
the unique solution of the equation

k∑

i=1

(riµi)
ds/2 = 1
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Conjecture. On every p.c.f. fractal F there exists a local regular Dirichlet form E
which gives positive capacity to the boundary points and is self-similar in the sense
that

E(f) =
k∑

i=1

ρiE(f◦ψi)

for a set of positive refinement weights ρ = {ρi}ki=1.

Definition. The group G of acts on a finitely ramified fractal F if each g ∈ G is
a homeomorphism of F such that g(Vn) = Vn for all n > 0.

Proposition. Suppose a group G of acts on a self-similar finitely ramified fractal
F and G restricted to V0 is the whole permutation group of V0. Then there exists
a unique, up to a constant, G-invariant self-similar resistance form E with equal
energy renormalization weights ρi and

E0(f, f) =
∑

x,y∈V0

(
f(x)− f(y)

)2
.

Moreover, for any G-invariant self-similar measure µ the Laplacian ∆µ has the
spectral self-similarity property (a.k.a. spectral decimation).
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end of the talk :-)

Thank you!
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