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outline:

@ Spectral analysis on fractals:

» Weak Uncertainty Principle (Okoudjou, Saloff-Coste, Strichartz, T.,
2008)

» Laplacians on fractals with spectral gaps gaps have nicer Fourier series
(Strichartz, 2005)

» Bohr asymptotics on infinite Sierpinski gasket (Chen, Molchanov, T.,
2015).

» Singularly continuous spectrum of a self-similar Laplacian on the
half-line (Chen, T., 2016).

» Spectral zeta function (Derfel-Grabner-Vogl, Steinhurst-T.,
Chen-T.-Tsougkas, Kajino, 2007-2017)

@ Algebraic applications: spectrum of the Laplacian on the Basilica Julia
set (with Rogers, Brzoska, George, Jarvis arXiv:1908.10505 ).

@ selected technical details (if time permits)

This is a part of the broader program to develop probabilistic, spectral and
vector analysis on singular spaces by carefully building approximations by
graphs or manifolds.
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7th Cornell Conference on Analysis, Probability, and
Mathematical Physics on Fractals: June 9-13, 2020

Home » 7th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals

Welcome!

Planning has begun for Fractals 7 (June 9-13, 2020). The purpose of this conference, held every three years, is to bring together
mathematicians who are already working in the area of analysis and probability on fractals with students and researchers from related
areas. Information will be posted here as it becomes available.

Financial support will be provided to a limited number of participants to cover the cost of housing in Cornell single dormitory rooms and
partially support other travel expenses. Students and junior researchers from underrepresented groups in STEM are particularly
encouraged to apply for travel funding. Well-established researchers are encouraged to use their own travel funding; the NSF expects
that most funds will be expended on otherwise unfunded mathematicians.

Registration details will be publicized once available.

All general inquiries can be sent to: fractals_math@cornell.edu
Conference Organizers:

o Robert Strichartz (chair), Cornell University

o Patricia Alonso Ruiz, Texas A&M University

o Michael Hinz, Bielefeld University

o Luke Rogers, University of Connecticut

o Alexander Teplyaev, University of Connecticut
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abstract

The talk will describe how spectral theory, geometry of graphs, and dynamical
systems are used to analyze spectral properties of the random walk generator on
finitely ramified self-similar graphs and fractals. In particular, pure point or
singular continuous spectrum appears naturally for such graphs. The standard
examples include the Sierpinski triangle, the Vicsek tree, and the Schreier graphs
of the Hanoi self-similar group studied by Grigorchuk and Sunic. A more
complicated example is related to the Basilica Julia set of the polynomial z2 —1
and its Iterated Monodromy Group, defined by Nekrashevych. Its spectrum was
investigated numerically by Strichartz et al and analytically in a joint work with
Luke Rogers and several students at UConn.
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analysis on

A part of an infinite Sierpinski gasket.
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Figure: An illustration to the computation of the spectrum on the infinite
Sierpiriski gasket. The curved lines show the graph of the function 2R(-).

Theorem (Rammal, Toulouse 1983, Béllissard 1988,
Fukushima, Shima 1991, T. 1998, Quint 2009)
On the infinite Sierpirniski gasket the spectrum of the Laplacian consists of a dense

set of eigenvalues P371(X) of infinite multiplicity and a singularly
continuous component of spectral multiplicity one supported on SR~1(JR).
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Energy spectrum for a fractal lattice in a magnetic field

Jayanth R. Banavar
Schlumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108

Leo Kadanoff
Department of Physics, University of Chicago, Chicago, Illinois 60637

A. M. M. Pruisken*
Schiumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108
(Received 10 September 1984)

To simulate a kind of magnetic field in a fractal environment we study the tight-binding
Schrodinger equation on a Sierpinski gasket. The magnetic field is represented by the introduction
of a phase onto each hopping matrix element. The energy levels can then be determined by either
direct diagonalization or recursive methods. The introduction of a phase breaks all the degeneracies
which exist in and dominate the zero-field solution. The spectrum in the field may be viewed as
considerably broader than the spectrum with no field. A novel feature of the recursion relations is
that it leads to a power-law behavior of the escape rate. Green's-function arguments suggest that a
majority of the eigenstates are truly extended despite the finite order of ramification of the fractal
lattice.
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FIG. 1. Fragment of the Sierpinski gasket. The phase of the
hopping matrix is equal to ¢ in the direction of the arrow and
—¢ otherwise.
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BAND SPECTRUM FOR AN ‘ELECTRON ON A SIERPINSKI GASKET IN A MAGNETIC FIELD
., IM; Ghez?
Centre de Physique Thébriquc. CNRS-Lurﬁihy, Case 907, F-13288, Marseille, Cedex 09, France
: S vand,
.+ Yin Yu Wang, R:Rammal* and B. Pannetier
CRTBT.C NRSi BP 166X; ,/Grenoble Cedex, France
. “,,, and
. Bellssard!
Centre de Physigue Théorique, CNRS-Luminy, Case 907, F-13288, Marseille, Cedex 09, France
~ (Received 20 July 1987 by S. Alexander)
We consider a quantum charged particle on a fractal lattice given by a
Sierpinski gasket, submitted:to a uniform magnetic field, in a tight
binding approximation. Its band spectrum is numerically computed
and exhibits a fractal structure. The ‘groundstate energy is also

compared to the superconductor transition curve measured for
Sierpinski lattice of superconducting material.
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choose the gauge in such a way that H depends only
upon o and o' in a periodic way with period one. We
will denote by Hiw, o) this operator from now on.

We also introduce the dilation operator D defined
as:

Delim) = ¢(2m). )
The scaling properties of this system are expressed in
the following Renormalization Group Equation
(RGE) [23];
E{El - H(e, o))'D = G{E* - H(o,*, a¥)}”,
3
where [7, 16];
0 G
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Fig. 2. Spectrum of H(w), computed by 10 iterations
of F. o is the horizontal variable, ranging from 0 to 1.
Eis the vertical variable, ranging from —4 to 4,



These results have been compared with an experi-
ment performed on an array of superconducting A1~
wires shaped like a Sierpinski gasket with six levels of
hierarchy. A description of this pattern generated by
e-beam lithography has been given in [20]. More de”

tails will be published in a separate paper [21]. The.
transition curve in the parameter space (7, B), where.”

Fig. 3. Four enlargements of the upper left corner of
F!& 2, showing the fractal nature of the spectrum,
with the approximate scaling law (7). « is the horizont-
al variable, ranging from 0to 2%, k = 2,4,6,8. Eis
the vertical variable, ranging from E, to 4, £, = 2.4,
3.68, 3.936, 3.9872.

- ODSEIvVes €Xperimentally e perioaiCity in tne para-

meter.a and also the scaling properties predicted by
the RGE (equation 3). The plot in Fig. 4 shows the
comparison between the experimental curve in log-log
scale together with the theoretical results for the edge
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Fig. 4. Comparison between the calculated edge of the
spectrum (left scale) with the experimental result
(right scale) on the critical temperature of a supercon-
ducting gasket: AT,/7, vs o in log-log plot, where
o = ®/d, is the reduced magnetic flux in the elemen-
tary triangle of the gasket: equation 8 has been used to
calculate the theoretical curve using the best fit para-
meters as explained in the text. The two curves have
been shifted for clarity.



Renormalization Group Analysis and Quasicrystals
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LINTRODUCTION

Several quantal systems involving scale invariant properties, have been studied during the
last few years by means of a Renormalization Group (RG) method. The most useful type
of models is probabiy the hamilionian describing the motion of a particle, phonon or
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electron, in 2 quasicrystal. The first quantity to be calculated is the energy spectrum, from
which we usualty get others like the density of states (DOS), thermodynamical information,
tike the heat capacity or the magnetic susccpublhty, or even various transport coefficients,
like the ivity. Using the spatial fons and scale
invariance, it is possible to get equatiohs satisfied by the moch which happen to be
sufficient to compute the spectrum in many cases. In particular the scale invariance will
produce fractal spectra and scaling laws for the physical quantities.
The main difficulty is that unlike the 1D case for which the calculation can usually be

performed by means of the transfer matrix method, the higher dimensional cases are far
from being under control yet. In this short paper we want to give an account of a new
strategy using operator algebras which should permit to extend the analysis to higher
dimension. Eventhough the method is not yet completely developed, it has already given a
certain number of convincing results, and we believe it should be the most efficient way of
studying these problems. In this paper we compare it with the transfer matrix formulation
for 1D chain and we show that both point of view are equivalent. We will only give an
insight of what happens for higher dimensional quasicrystals, for this part of the work is
still under progress.

2.JACOBI MATRIX OF A JULIA SET

2.1 The Julia Set of a Polynomial

The simplest model was designed in 1982 [Bellissard(82)}, to get a new class of
hamiltonians with Cantor spectra. It is the Jacobi matrix associated to a Julia set. Let P(z)
= 2Nap NI, +py. z+py be a polynomial with real coefficients. We then consider the
dynamical system on the complex planc defined by 2,,,=P(z,) . Cleatly the point at
infinity is fixed by P, and it is attractive, for there is R>0 big enough, such that
whenever fof 2R , then /P(z)] 2RV2 . Let { be a fixpoint, namely a solution of P({)= ¢,
and let D(¢) be the “domain of atiraction of ¢, namely the open set of points z such
that z,~¢ as n—eo. The Julia set J(P) of P is the complement of the union of the

- atiraction domain of all fixpoints. Since the point at infinity is always atmactive, J(P) is

always compact. A famous theorean by Julia and Fatou {Julia(18), Fatou(19), Douady(82)]
asserts that J(P) is completely disconnected whenever all eritical polats of P are attracted
by the point at infiniry.
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3.SIERPINSKY LATTICE IN A MAGN

3.1 The 2D Sierpinsky Lattice [Alexander(83,84), Rammal(84)]
“The Sierpinsky latice S in 2D is usually construcied according 10 the fig.1 below.
Narely, let ¢;,6, be two unit vectors making an angle of 60°. Then S is contained in the
st NeptNey . Letthen S, be the subset of points ¥€S with x= meney and 0 <
man <2t is recursively constructed a5 S; = (meptney 30 Smin 2], S =
SLUES+2ke JU [Sir2key) for k21, and § = UpySy -

Fig.1- The subset S of the Sicrpinsky Jauice in 2D
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From this constuction it follows that 25 is included in $. A site in 28 is called "cven®,
the others "odd". Any odd site admits the decomposition 2x+y where xe§ and
yeT={epes er+ey] . The subsets T(x) = T+2x are called "blocks™. If xS , its nearest
neigbours are all points in S within a distance / of x

3.2 The Laplacean on §
‘The Laplace operators A, and 4. are defined on the Hilbert spaces (5] and £($\(0})
respectively by:

8,0 O = V2Z 00 006) 8.6 () = YO+ p_yiar 0
if Ixl =1, and

8,6 00 = Zyy i 03, if >, 9el(S), (11a)

Ay ()= Z e W x& S\0) , we (S\(0}) at)

Our goal is to compute the spectrum of 4 . In order to do so we will use the scale
invariance of the Sierpinsky lattice. The main result is the following [Rammal(34),
Bellissad(85))]

Theorem 3:  The spectrum of 4, is made of two infinite sequences of eigenvalues of
infinite multiplicity accumulating on the Julia set of the polynomial P(z) =
2(2-3) . The first sequence consists of one isolated cigenvalue in each gap
of J{P), whereas the other consists of one edge of cach gap of J(P). ¢
Proof: Letus introduce the dilation operator D defined by

Dy (x) = y(2x) xe8, e l(S) 12)

Itis a partial isometry such that DD*=1 . Then we claim that A, are solutions of the
following RG equation [Bellissard(35)]

D{z1-a}1D* = (@ 2)(z+1)/(z+2) (P(0)1-A}1, P(z) = 2(z-3) (13)
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E = {2t - 722 - [2(XU+YV)+ dXjz + A4(1-UN/(82 + €212,
an

B+p =d+a) o~ ) - 3/% Arctan (S/C)

with:

S =[(XV + YUY +2¥]z+ 2V + XY), C=22 +[(XY = YV) +2K]z + 20U - Y3,
8)
X =cos 2me,Y =sin 2ne,  U=cos2a(o+er) V= sin 27 (ored)

Following the intuition provided by e lust section, the “dynamical spectrum’ is defined as
the invariant set.of the map F(2,0,6) = (E,5.f) of RxT? . Since i+ fi' = 4(a + o)
in (17), only one of the two nomalized fluxes is actuaily relevant, leading to an effective
2D map. Is the dynamical spectrum equal 10 the actual spectrum of the original operator ?
This is @ question with no answer yet. Nevertheless the numerical calculation of the
dypamical spectrum given in fig.2 below [Ghez(87)], shows that it should be.

One should point out there that this calculation has been compared to an experiment
performed in Grenoble, on a superconducting network designed according to fig. 1.
Landau-Ginzburg's theory {de Gennes(81), Alexandez(83)] shows that the transition
between the normal metal and the super conducting phases occurs in the (7,8) plane
(where T is the temperarure) on a curve which is simply related to the edge of the

dynamical spectrum as calc

ed above [Ghez(87)]. The comparison between theory and
experiment is actually very accurate as shown in fig.3 below.

Renormalization group analysis and quasicrystals
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Following the intuition provided by the last section, the "dynamical spectrum” is defined as
the invariant set of the map F(z,c,0') = (E.B.B) of RxT? . Since B+ ' =4(e+ &)
in (17), only one of the two normalized fluxes is actually relevant, leading to an effeciive
2D map. Is the dynamical spectrum equal 1o the actual spectrum of the original operator ?
This is a question with no answer yet, Nevertheless the numerical calculation of the
dynamical spectrum given in fig.2 below [Ghez(§7)], shows that it should be.

One should point out there that this calculation has been compared to an experiment
performed in Grenoble, on a superconducting retwork designed according to fig. 1.
Landau-Ginzburg's theory [de Gennes(81), Alexander(83)] shows that the transition
between the normal metal and the super conducting phases occurs in the {T.B) plane
(where T is the temperature) on a curve which is simply related to the edge of the
dynamical spectrum as calculated above [Ghez(87)]. The comparison between theory and
experiment is actually very accurate as shown in fig.3 below.



Weak Uncertainty Principle (Kasso Okoudjou, Laurent
Saloff-Coste, T., 2008)

The R! Heisenberg Uncertainty Principle is equivalent, if ||f||2 = 1, to

(/R/R Ix — yPIF ()| |F(y)I? dx dy> : (/R IF(x) 2 dx) . %

On a metric measure space (K, d, n) with an energy form €

a weak uncertainty principle

] Var,(u) £(u, u) > c\ (1)
holds for u € L?(K) () Dom(&)

Var,) = [[  dey) GOl )P du) duty). (2

provided either that d is the effective resistance metric, or some of the suitable
Poincare inequalities are satisfied.
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Laplacians on fractals with spectral gaps gaps have nicer
Fourier series (Robert Strichartz, 2005)

If the Laplacian has an infinite sequence of exponentially large spectral gaps and
the heat kernel satisfies sub-Gaussian estimates, then the partial sums of Fourier
series (spectral expansions of the Laplacian) converge uniformly along certain
special subsequences.

U.Andrews, J.P.Chen, G.Bonik, R.W.Martin, T.,

Wave equation on one-dimensional fractals with spectral decimation.
J. Fourier Anal. Appl. 23 (2017)
http://teplyaev.math.uconn.edu/fractalwave/

An introduction given in 2007:
http://www.math.uconn.edu/~teplyaev/gregynog/AT.pdf
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Half-line example

@ hd o hd A A A A A *—>

> > > > > > > < > < —>
1

qpP P9 9qp qp PqQ pPqQ qPp Pq;;
Transition probabilities in the pg random walk. Here p € (0,1) and g =1 — p.
f(0) — f(1), ifx=20
(Apf)(x) =4 f(x) —gf(x —1) — pf(x+1), if37™®x =1 (mod 3)
f(x) — pf(x —1) — gf(x+ 1), if37™Xx =2 (mod 3)

Theorem (J.P.Chen, T., 2016)

If p # % the Laplacian D, on £%(Z4.) has purely singularly continuous
spectrum. The spectrum is the Julia set, a topological Cantor set of Lebesgue
z(z> — 3z 4 (2 + pq))

pq

measure zero, of the polynomial R(z) =

This is a simple, possibly the simplest, quasi-periodic example related to the
recent results of A.Avila, D.Damanik, A.Gorodetski, S.Jitomirskaya, Y.Last,
B.Simon et al.
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Bohr asymptotics

For 1D Schodinger operator
Hyp = —¢" + V(x)1, x>0 3)

if V(x) — 400 as x — +oo then (H. Weyl), the spectrum of H in
L2([0, c0), dx) is discrete and, under some technical conditions,

NOWV) = # ) S A ~ [T VRS VG de (9

This is known as the Bohr's formula. It can be generalized for R”.
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Theorem (Fractal Bohr's formula (Joe Chen, Stanislav Molchanov, T.,
J. Phys. A: Math. Theor. (2015)))

On infinite Sierpinski-type fractafolds, under mild assumptions,

lim NV, ) _

A—oo g(V,A) = ®)

where

gV ) = [ (A= V()] 6 (5 1o8(h = V() ) old). (6

Koo

where G is the Kigami-Lapidus periodic function, obtained via a renewal theorem.

v
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Spectral zeta function

Theorem. (Derfel-Grabner-Vogl, Steinhurst-T., Chen-T.-Tsougkas, Kajino
(2007-2017)) For a large class of finitely ramified symmetric fractals, which
includes the Sierpinski gaskets, and may include the Sierpiriski carpets, the

spectral zeta function
2
G(e) =3/

has a meromorphic continuation from the half-pain Re(s) > ds to C. Moreover,
all the poles and residues are computable from the geometric data of the fractal.
Here )A;j are the eigenvalues if the unique symmetric Laplacian.

o Example: {(s) is the Riemann zeta function up to a trivial factor in the case
when our fractal is [0, 1].

@ In more complicated situations, such as the Sierpinski gasket, there are
infinitely many non-real poles, which can be called complex spectral
dimensions, and are related to oscillations in the spectrum.
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0] ° O _ log9
ds ~ logh
O [ O
_ log4
10) ° (@) dR ~ logh
I'\O -dR |1 f\ds
) ° O
O ° O
0] ° O

Poles (white circles) of the spectral zeta function of the Sierpiriski gasket.
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Spectral Analysis of the Basilica Graphs (with Luke
Rogers, Toni Brzoska, Courtney George, Samantha Jarvis)

The question of existence of groups with intermediate growth, i.e.
subexponential but not polynomial, was asked by Milnor in 1968 and
answered in the positive by Grigorchuk in 1984. There are still open questions in
this area, and a complete picture of which orders of growth are possible, and
which are not, is missing.

The Basilica group is a group generated by a finite automation acting on the
binary tree in a self-similar fashion, introduced by R. Grigorchuk and A. Zuk in
2002, does not belong to the closure of the set of groups of subexponential
growth under the operations of group extension and direct limit.

In 2005 L. Bartholdi and B. Virag further showed it to be amenable,
making the Basilica group the 1st example of an amenable but not
subexponentially amenable group (also “Miinchhausen trick” and
amenability of self-similar groups by V.A. Kaimanovich).
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The basilica Julia set, the Julia set of z2 - 1 and the limit set of the basilica
group of exponential growth (Grigorchuk, Zuk, Bartholdi, Virdg, Nekrashevych,
Kaimanovich, Nagnibeda et al.).
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In 2005, V. Nekrashevych described the Basilica as the iterated
monodromy group, and there exists a natural way to associate it to the Basilica
fractal (Nekrashevych+T., 2008).

In Schreier graphs of the Basilica group (2010), Nagnibeda et al. classified
up to isomorphism all possible limits of finite Schreier graphs of the Basilica group.

In Laplacians on the Basilica Julia set (2010), L. Rogers+T. constructed
Dirichlet forms and the corresponding Laplacians on the Basilica fractal in two
different ways: by imposing a self-similar harmonic structure and a graph-directed
self-simliar structure on the fractal.

In 2012-2015, Dong, Flock, Molitor, Ott, Spicer, Totari and Strichartz
provided numerical techniques to approximate eigenvalues and eigenfunctions on
families of Laplacians on the Julia sets of z2 + c.
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Spectral Analysis of the Basilica Graphs

Replacement Rule and the Graphs G,
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Spectral Analysis of the Basilica Graphs

Distribution of Eigenvalues, Level 13

Cumulative Distribution of Eigenvalues, Level 13

Cumulative Distribution
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Spectral Analysis of the Basilica Graphs

One can define a Dirichlet to Neumann map for the two boundary points
of the graphs G,. One can construct a dynamical system to determine
these maps (which are two by two matrices). The dynamical system allows
us to prove the following.

Theorem

In the Hausdorff metric, limsup o(L(") has a gap that contains the
n—o0

interval (2.5,2.8).

Theorem (arXiv:1908.10505)

In the Hausdorff metric, limsup o(L(") has infinitely many gaps.
n—o0




Spectral Analysis of the Basilica Graphs

Infinite Blow-ups of G,

Definition
Let {kn}nen be a strictly increasing subsequence of the natural numbers.
For each n, embed Gy, in some isomorphic subgraph of Gy, ,. The
corresponding infinite blow-up is G 1= Up>0 Gk, .

Assumption
The infinite blow-up G, satisfies:

@ For n > 1, the long path of Gi _, is embedded in a loop v, of G, .

n—1

@ Apart from I, , and r,,_,, no vertex of the long path can be the
3,6,9 or 12 o'clock vertex of 7.

@ The only vertices of Gy, that connect to vertices outside the graph
are the boundary vertices of Gk, .
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Spectral Analysis of the Basilica Graphs

Theorem

(kn) _ (Un)
(1) o(L*, )= o(L§?).

Yn
(2) The spectrum of L(>) is pure point. The set of eigenvalues of L(>) is

U otg”) = | Mo},

n>0 n>0

where the polynomials ¢, are the characteristic polynomials of Lg"), as
defined in the previous proposition.

(3) Moreover, the set of eigenfunctions of L(>) with finite support is
complete in (2.




TECHNICAL DETAILS



Fix p, g>0, p+q=1, and define probabilistic Laplacians A,, on the segments
[0, 3"] of Z inductively as a generator of the random walks:

0 1
*—0
1 1
0 1 3
r—o—o— 0

q :o)n 2‘(371) 3n+1
1 qp P 4q 1

and let A = lim A,, be the corresponding probabilistic Laplacian on Z.
n—oo



If 2z #—1 % p and R(z)=2z(22+32+2+pq)/pq, then
R(z) € 0(A)) <= z € 0(Apnt1)

Theorem (Joe P. Chen and T., JMP 2016). o(A) = Jg, the Julia set
of R(z).

If p=gq, then o(A)=[—2, 0], spectrum is a.c.

If p # q, then o(A) is a Cantor set of Lebesgue measure zero, spectrum is

singularly continuous.
3
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There are uncountably many “random” self-similar Laplacians A on Z:
For a sequence X = {k;}32,, k; € {0, 1,2}, let
n .
X, =-> k;3
j=1
and A,, is a probabilistic Laplacian on [X,,, X,,+3"]:

X, X431 X,+2(3"1) X,+3"

1 qp P q 1

In the previous example k; = 0 for all 3.

Theorem.

For any sequence I we have 0(A) = Jgr. The same is true for the Dirichlet
Laplacian on Z (when k; = 0).



R. Grigorchuk and Z. Sunik, Asymptotic aspects of Schreier graphs and Hanoi
Towers groups.
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Sierpinski 3-graph Sierpinski 4-graph
(Hanoi Towers-3 group) (standard)



These three polynomials are conjugate:

Sierpiniski 3-graph (Hanoi Towers-3 group): f(x) = x?> —x — 3
f3)=3f(3)=5

Sierpiiski 4-graph, “adjacency matrix” Laplacian: P(X) = 5X — A2
P(0) =0, P'(0) = 5

Sierpiniski 4-graph, probabilistic Laplacian: R(z) = 422 + 52
R(0) = 0, R'(0) = 5



Theorem. Eigenvalues and eigenfunctions on the
Sierpinski 3-graphs and Sierpiniski 4-graphs are in
one-to-one correspondence, with the exception of the
eigenvalue z = —% for the 4-graphs.

V S



Sierpinski 3-graph ! Sierpinski 4-graph
(Hanoi Towers-3 group) (standard)
R(z) = 22% + 4z R(z) = %zz + %z



Let H and Jqy be Hilbert spaces, and U : Hy — H be an isometry.

Definition. We call an operator H spectrally similar to an operator Hy with
functions g and ¢y if

U*(H — 2)7'U = (po(2)Ho — ¢1(2)) ™"
In particular, if po(2) # 0 and R(2) = ¢1(2)/@o(2z), then

(=R

U*(H — 2)"'U =
( ) 20(2)

IfH=<S X)then

X Q
S — ZIO — X(Q - ZIl)_IX = QD()(Z)HO — (PI(Z)IO

Theorem (Malozemov and T.). If A is the graph Laplacian on a self-similar
symmetric infinite graph, then

Jr Co(Ax) CIrU D

where D, is a discrete set and J g is the Julia set of the rational function R.
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Let A be the probabilistic LapIaC|an (generator of a simple random walk) on the
Sierpiriski lattice. If z # -2 5 4, 2, and R(z) = z(4z + 5), then

R(z) € 0(A) <= z € o(A)

O'(A) :HRU®

B ot SIS
o
W
N
[=}

where @ = {—7}U < U R™{- 4})
and Jg is the Julia set of R(z)

Niw Ao




There are uncountably many nonisomorphic
Sierpinski lattices.
Theorem (T). The spectrum of A is pure point.
Eigenfunctions with finite support are complete.

0 AexeA AexeA AexeA A






Let A(0) pe the Laplacian with zero (Dirichlet) boundary condition at L. Then

the compactly supported eigenfunctions of A are not complete (eigenvalues in
€ is not the whole spectrum).

Let L) be the set of two points adjacent to AL and wg)) be the spectral

measure of A(0) associated with ]IaL(O)' Then supp(w(Ao)) = Jr has Lebesgue
measure zero and

d(w(AO) (e} R1,2)
dw(AO)

_ (82 +5)(22 + 3)

(=) = 2z 1 1)@= + )




Three contractions Fi, Fy, F3 : R' — R', Fj(xz) = i(x+p;), with fixed

points p; = 0, %, 1. The interval I=[0, 1] is a unique compact set such that

1= J B
7=1,2,3
The boundary of I is 81 = Vy = {0,1} and the discrete approrima-

tions toLare V, = |J F;(Vp—1) = {3%}2:0
j=1,2,3

Vo=0I : °

Vs

20



Definition. The discrete Dirichlet (energy) form on V, is
E(f) =) (Fw—f@)

z,YyEVn
y~z

and the Dirichlet (energy) form on I is E(f) = li_)m 3"EL(S) =
Jo 1§ (@) de

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition. 3&,11(f) > &€,.(f) and 3E,,11(h) = E,(h) = 37"E(h)
for a harmonic h.

Proposition. The Dirichlet (energy) form on I is self-similar in the sense that

E(f) =3) _ E&(foF))

ji=1,2,3

21



Definition. The discrete Laplacians on V,, are

Anf@) =3 Fo)—Ff@), zeVL\V

YyeEWVn
y~z

and the Laplacian on I is A f(z) = 1i_{n 9"A,f(z) = f'(z)

Gauss—Green (integration by parts) formula:

1 1
&) =~ | rardetsr],

Spectral asymptotics: Let p(A) be the eigenvalue counting function of
the Dirichlet or Neumann Laplacian A:

p(N) = #{3 : A < A}

p(A) 1

A—oo Nds/2 T
where ds = 1 is the spectral dimension.

Then

22



A )—8/2

Definition. The spectral zeta function is (a(s) = Z)\ 760(_ J
)

Its poles are the complex spectral dimensions.

Let R(z) be a polynomial of degree IN such that its Julia set Jgp C (—o0, 0],
R(0) =0and ¢c = R/(0) > 1.

Definition. The zeta function of R(z) for Re(s) > dp = 218N g

logc
C;](s) — 7}1_)1112 ‘(_an)fs/2 — ZAJ_S/Z
z€R™"{zo}
fi(s)

Theorem. (*(s) = - Nes/2 + £5°(8), where f1(s) and £5°(s) are ana-

lytic for Re(s)>0. If Jg is totally disconnected, then this meromorphic continuation
extends to Re(s)>—e, where £>0.

In the case of polynomials this theorem has been improved by Grabner et al.

23



:nEZ}

log N+4inm
logc

dp € the poles of C;O - {2
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©
_
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Theorem. (a(s) = (7 (s) where R(z) = z(42°+122+9).
The Riemann zeta function {(s) satisfies {(s) = ﬂsC%(s) The only complex
spectral dimension is the pole at s = 1.

A sketch of the proof: If z# — %, —%, then
R(z) € 0(A,) < z € 0(Ant1)

and so Ca(s) = C;’%(s) since the eigenvalues A;j of A are limits of the eigenvalues
of 9" A,,.
Also A\j=—m%52 and so

o N8/2
ca(s) =Y (7%?) = 75¢(s)
j=1
where ¢(s) is the Riemann zeta function. Q.E.D.

— 513 _qn -S/2
¢(s) = =lim ) (-9"z)
zeRT {0}
z2#0
25



Definition. A, is pu—Laplacian if
1 1
ef) = [ 1F@Pde=— [ A fdu+ 11,
0 0

Definition. A probability measure p is self-similar with weights my, ms, ms

ifu= >, m;ucF;.
§j=1,2,3

Proposition. uf(m)_—_ lim (1+1)nAnf(m).

An iﬂ _ pf( )+qf(k+1) _f(gn)
/) { aF (50 + pF(EE) — (&)

ma _ ml
mitmz’ 9 mytmy’ and

where mi=mg, p=

ma mo ms

1 qp Pq 1

® hd L o hd hd hd A L o
P

1
at
3
st
Q4
a t
3
t
S
st
Q|
st
QY
at
s
st
Q|
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Spectral asymptotics: If p(\) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian A, then

0< hm 1nf p(N) < lim sup PN < oo
Ads/2 A—00 Ads/2
where the spectral dimension is
1
:L% < 1.
10g(1+ﬁ)

All the inequalities are strict if and only if p # gq.

Proposition. R(z) € 0(A,) < z € o(An+t1)
where z#—14p and R(z)=z(2%24+32+2+pq)/pq.
Note that R'(0)=1 + ., and d;=dp.

Theorem. CA“(S):C?{(S)



Three contractions Fy, F,, F3 : R? — R?
Fj(x) = 3(z+p;), with fixed points p1, pz, ps.

D2

D1 D3
The Sierpinski gasket is a unique compact set S such that
§= U Fj(9)

j=1,2,3

28



Definition. The boundary of S is

98 = Vo = {p1,p2, p3}
and discrete approrimations to S are

Vo= U Fj(Vn—l)

Jj=12,3

Vo Vi: Vs




Definition. The discrete Dirichlet (energy) form on V, is
E(f) =) (Fw—f@)

z,YyEVn
y~z

and the Dirichlet (energy) form on S'is
£(f) = lim (2)"€.(F)

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition.  2&,.1(f) > En(f)
§8n+1(h):8n(h):(g) “"&(h) for a harmonic h.

Theorem (Kigami). € is a local regular Dirichlet form on S which is self-similar

in the sense that
Ef) =35 D E(foF))

ji=1,2,3
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Definition. The discrete Laplacians on V,, are

Anf@) =3 f)—Ff@), zeEVL\V

YEVR
y~

and the Laplacian on S'is
A,f(z) = lim 5"A, f(z)
n—oo

if this limit exists and A, f is continuous.

Gauss—Green (integration by parts) formula:

&) == [ SAfdu+ Y 10)0.50)

pedS
here p is the normalized Hausdorff measure, which is self-similar with weights

er
1
3?
> ek

j=1,2,3

w
1
37
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Spectral asymptotics: If p(\) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian A, then
p(A) . pP(A)

Nioyz < lmsup o

0< llm 1nf < oo

where the spectral dimension is

log 9
1<d, =% <2

Proposition. R(z) € 0(A,) <= z € 0(Apq1) where 2#£ — 1, -3, 2

and R(z) = z(5 + 4z).

Theorem (Fukushima, Shima). Every eigenvalue of A, has a form
A=5"1lim 5"R"(z)

n—oo

where R™™(zg) is a preimage of zy = —%, —Z under the n-th iteration power

of the polynomial R(z). The multiplicity of such an eigenvalue is C13™ + Cs.



the Sierpinski gasket is
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Theorem. Zeta function of the Laplacian on
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Definition. If £ is a fractal string, that is, a disjoint collection of intervals of
lengths 1}, then its geometric zeta function is {c(s) = Zlf

Theorem (Lapidus). If A:—% is a Neumann or Dirichlet Laplacian on £,

then Ca(s) = m=5¢(s)Ce(s).

Example: Cantor self-similar fractal string.

(e BB ______§o§8 8§ §B§ §B§B NN §]
If £ is the complement of the middle third Cantor set in [0, 1], then the complex

: . log 2+2i
spectral dimensions are 1 and {W: n€”Z},

Ce(8) = 755780 Cals) = C(s)%
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Definition. A post critically finite (p.c.f.) self-similar set F' is a compact con-
nected metric space with a finite boundary @F C F' and contractive injections
;1 F — F such that k
F=9%(F) = |Jui(F)
and i=1
Po(F) [ %w(F) C 9o (9F) () 1w (dF),

for any two different words v and w of the same length. Here for a finite word
w € {1,...,k}"™ we define Yy = Py, 0 ... 0 WPy,

We assume that OF is a minimal such subset of F'. We call 4,,(F") an m-cell.
The p.c.f. assumption is that every boundary point is contained
in a single 1-cell.

Theorem (Kigami, Lapidus). The spectral dimension of the Laplacian A, is
the unique solution of the equation

k
> = 1
i=1



Conjecture. On every p.c.f. fractal F there exists a local regular Dirichlet form €
which gives positive capacity to the boundary points and is self-similar in the sense
that

k
E(f) =D pi€(for)

=1
for a set of positive refinement weights p = {p; }¥_,.

Definition. The group G of acts on a finitely ramified fractal F' if each g € G is
a homeomorphism of F' such that g(V,,) = V,, forall n > 0.

Proposition. Suppose a group G of acts on a self-similar finitely ramified fractal
F and G restricted to Vj is the whole permutation group of V4. Then there exists
a unique, up to a constant, G-invariant self-similar resistance form & with equal
energy renormalization weights p; and

2
Eo(f, )= Y (Fl@) —fy)"
z,yeVy
Moreover, for any G-invariant self-similar measure v the Laplacian A, has the

spectral self-similarity property (a.k.a. spectral decimation).
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end of the talk :-)

Thank you!

Sasha Teplyaev (UConn)

m]
Spectral analysis on self-similar graphs and fractals

=




	     Spectral analysis on fractals
	Half-line example
	Bohr asymptotics
	Spectral zeta function
	Spectral Analysis of the Basilica Graphs (with Luke Rogers, Toni Brzoska, Courtney George, Samantha Jarvis)

