Show all work.

Write each problem on a separate page. Each answer should be clearly written in the end of the page. Preferably, make a single pdf file and submit in HuskyCT.

Required problem:

(1a) Let X, Y be uniformly distributed in the triangle defined by x < 2, y < 1, x + 2y > 2. Find the marginal densities $f_X(x)$ and $f_Y(y)$.

Answer:

$$f_X(x) = x/2$$
 when $0 < x < 2$ and zero otherwise;

$$f_Y(y) = 2y$$
 when $0 < y < 1$ and zero otherwise.

(1b) In the same situation find $\mathbb{E}(X|Y)$ and $\mathbb{E}(Y|X)$.

Answer:

$$\mathbb{E}(X|Y) = 2 - y$$
 when $0 < y < 1$ and undefined otherwise;

$$\mathbb{E}(Y|X) = 1 - x/4$$
 when $0 < x < 2$ and undefined otherwise.

Extra credit problems:

(1c) In the same situation find $\rho(X,Y)$. Answer:

$$\mathbb{E}X = 4/3$$
, $\mathbb{E}X^2 = 2$, $\operatorname{Var}X = 2/9$,

$$\mathbb{E}Y = 2/3, \mathbb{E}Y^2 = 1/2, \text{Var } Y = 1/18,$$

$$\mathbb{E}XY = 5/6$$
, $Cov(X, Y) = -1/18$,

$$ho(X,Y) = rac{-1/18}{\sqrt{rac{2}{9} \cdot rac{1}{18}}} = -rac{1}{2}$$

- (2a) Let $U = e^{X+Y}$ and $V = e^X$ where X, Y are two independent exponential random variables with parameter $\lambda > 0$. Find Cov(U, V) if $\lambda = 3$. Answer: 9/8, see the next question.
- (2b) In the same situation find how Cov(U, V) depends on λ . Is there λ for which Cov(U, V) = 0?

$$\lambda^2 \int_0^\infty \int_0^\infty e^x e^{-\lambda x - \lambda y} dx dy = rac{\lambda}{\lambda - 1} ext{ when } \lambda > 1$$

$$\lambda^2 \int_0^\infty \int_0^\infty e^{x+y} e^{-\lambda x - \lambda y} dx dy = \frac{\lambda^2}{(\lambda-1)^2}$$
 when $\lambda > 1$

$$\lambda^2 \int_0^\infty \int_0^\infty e^x e^{x+y} e^{-\lambda x - \lambda y} dx dy = rac{\lambda^2}{(\lambda-1)(\lambda-2)} ext{ when } \lambda > 2$$

$$\lambda^2 \int_0^\infty \int_0^\infty e^x e^{x+y} e^{-\lambda x - \lambda y} dx dy = \frac{\lambda^2}{(\lambda - 1)(\lambda - 2)} \text{ when } \lambda > 2$$
Therefore, $\text{Cov}(U, V) = \frac{\lambda^2}{(\lambda - 1)(\lambda - 2)} - \frac{\lambda}{\lambda - 1} \cdot \frac{\lambda^2}{(\lambda - 1)^2} = \frac{\lambda^2}{(\lambda - 1)^3(\lambda - 2)} \text{ when } \lambda > 2$

and undefined otherwise.

There is no λ for which Cov(U, V) = 0.