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Motivation

let f be an attracting germ of a diffeo. on R at a fixed point 0
and let

Of (x0) := {f ◦n(x0) : n ∈ N},
be its orbit by f .

Can one read the formal (or even analytic) class of f from the
“fractality” of its one orbit?
The tube function of the orbit:

Vf := Vf ,x0 : ε 7→ |Of (x0)ε ∩ [0, x0]|



Relative fractal drum (A,Ω)

∅ ≠ A ⊂ RN , Ω ⊂ RN , Lebesgue measurable, i.e., |Ω| < ∞
upper r-dimensional Minkowski content of (A,Ω):

Mr (A,Ω) := lim sup
δ→0+

|Aδ ∩ Ω|
δN−r

upper Minkowski dimension of (A,Ω):

dimB(A,Ω) = inf{r ∈ R : Mr (A,Ω) = 0}

lower Minkowski content and dimension defined via lim inf

if ∃D ∈ R such that

0 < MD(A,Ω) = MD(A,Ω) < ∞,

we say (A,Ω) is Minkowski measurable; in that case

D = dimB(A,Ω)



The relative distance zeta function LRZ2017

(A,Ω) RFD in RN , s ∈ C and fix δ > 0

the distance zeta function of (A,Ω):

ζA,Ω(s; δ) :=

∫
Aδ∩Ω

d(x ,A)s−N dx

dependence on δ is not essential

holomorphic on {Re s > dimB(A,Ω)}
the complex dimensions of (A,Ω) are defined as the poles
of ζA,Ω

in our case A = Of (x0) and Ω = [0, x0]:

ζf (s) = ζf ,x0(s) :=

∫ x0

0
d(x ,Of (x0))

s−1 dx ,



Fractal tube formulas for relative fractal drums

An asymptotic formula for the tube function

t 7→ VA,Ω(t) := |At ∩ Ω| as t → 0+ in terms of ζA,Ω .

Theorem (Simplified pointwise formula with error term)

• α < dimB(A,Ω) < N; ζA,Ω satisfies suitable rational decay
conditions (d-languidity) on the half-plane W := {Re s > α},
then:

VA,Ω(t) =
∑

ω∈P(ζA,Ω,W)

res

(
tN−s

N−s
ζA,Ω(s), ω

)
+ O(tN−α).

if we allow polynomial growth of ζA,Ω, in general, we get a
tube formula in the sense of Schwartz distributions



Fractal tube formulas for relative fractal drums

An asymptotic formula for the tube function

t 7→ VA,Ω(t) := |At ∩ Ω| as t → 0+ in terms of ζA,Ω .

Theorem (Case of simple poles)

• In case the the fractal zeta function has only simple poles:

VA,Ω(t) =
∑

ω∈P(ζA,Ω,W)

tN−ω

N−ω
res (ζA,Ω(s), ω) + O(tN−α).

a pole ω of order m generates terms of type

tN−ω(− log t)k−1 for k = 1, . . . ,m

if ω ∈ C \ R then the term tN−ω = tN−Reωe−i Imω log t

introduces oscillations in the order tN−Reω which are
multiplicative periodic with period T = e2π/ Imω



Parabolic analytic germs

f (x) = x − axk+1 + o(xk+1), a > 0, x → 0. (1)

Formal change of variables in the class of formal power series
x + x2R[[x ]] reduces f to a normal form which is a time-one
map of a simple vector field:

f0(x) = Exp

(
− xk+1

1− ρxk
d

dx

)
.id, k ∈ N, ρ ∈ R. (2)

Parabolic germs of the type (2) are called model
diffeomorphisms.

the pair (k , ρ) ∈ N× R is called the formal invariant of f .



Precise computations for the simplest model case of
germs when ρ = 0 (MRR 2020)

∗ Model cases with residual invariant ρ = 0 and multiplicity k ∈ N
∗ time-one maps of simple vector fields x ′ = −xk+1:

fk(x) := Exp(−xk+1 d

dx
).id =

x

(1 + kxk)1/k
= x−xk+1+o(xk+1), k ∈ N.

Proposition (The complex dimensions of orbits, MRR 2020)

ζfk (s), Re(s) >
k

k+1 , the distance zeta function of an orbit Ofk (x0)
of a model parabolic germ.

1 ζfk (s) can be meromorphically extended to C,
2 the poles of ζfk (s) located at 1− 1

k+1 = k
k+1 and at (a subset

of ) the set of points 1− m
k+1 , m ∈ N, all simple

3 the Minkowski (box) dimension of Ofk (x0) is D = k
k+1 , the

pole maximal real part



Proposition continued...

Proposition

Precise description of poles:

ζfk (s) =
21−s

s

M∑
n=0

Z̃k(s, n)ζ 1

kxk
0

(
k + 1

k
s + n

)
+ R(s),

R(s) defined and holomorphic for Re s > − Mk
k+1 .

The functions Z̃k(s, n) entire and
Z̃k(s, n) =

k−
k+1
k

s
n∑

m=0

(−k)m
(
s

m

) m∑
i=0

(−1)i
(
m

i

) i∑
j=0

(−k)−j

(
i

j

)( i−m
k

n +m − j

)
.

Hurwitz zeta function: ζa(s) :=
∑∞

j=0
1

(j+a)s
, a > 0, Re(s) > 1



Generalized asymptotic expansion of the tube
function - coefficients allowed to be oscillatory

f (x) = x − axk+1 + o(xk+1) ∈ Diff(R, 0), a > 0, arbitrary
parabolic germ

’Problem’ noted in (R, 2014), (MRRZ, 2019):
(∗) the tube function ε 7→ Vf (ε) fails to have a full asymptotic
expansion in power-logarithm scale,

(∗) oscillatory coefficient at order O(ε
2k+1
k+1 ), ε → 0.



The continuous tube function-a ’dynamical
smoothening’ of the expansion (MRRZ 2019)

Vf (ε) = |Of (x0)ε| = |Tε|+ |Nε| = 2ε · nε + (f nε(x0) + 2ε), ε > 0

(∗) ε 7→ nε the so-called discrete critical time ’separating’ tail and

nucleus - jump function at εn = f ◦n(x0)−f ◦(n+1)(x0)
2 → 0, n → ∞.

(∗) nε ∈ N determined by two inequalities:

|f ◦(nε−1)(x0)− f ◦nε(x0)| ≥ 2ε,

|f ◦nε(x0)− f ◦(nε+1)(x0)| < 2ε.



(∗) the continuous critical time (MRRZ 2019) ε 7→ τε
- an analytic, dynamical ’approximation’ of nε
- relies on embedding of f as the time-one map in a flow
{f t : t ∈ R}:

f τε(x0)− f τε+1(x0) = 2ε.

Note: nε = ⌊τε⌋+ 1, ε > 0

The continuous tube function ε 7→ V c
f (ε)

V c
f (ε) = 2ετε + (f τε(x0) + 2ε), ε > 0.

(∗) analytic in ε ∈ (0, δ)
(∗) expansion coincides with the expansion of ε 7→ Vf (ε) up to the
first oscillatory term
(∗) full asymptotic expansion in a power-log scale, no oscillatory
coefficients!



Generalized asymptotic expansion of tube
function-coefficients oscillatory functions

Proposition (MRR 2020)

A generalized asymptotic expansion of the tube function with
full description of oscillatory coefficients:

Vf (ε) ∼ 2
1

k+1 a−
1

k+1
k + 1

k
· ε

1
k+1 +

k∑
m=2

am · ε
m

k+1 + 2ρ
k − 1

k
· ε log ε+ bk+1(x0)ε+

+
2k∑

m=k+2

⌊m
k
⌋+1∑

p=0

cm,pε
m

k+1 logp ε+

⌊ 2k+1
k

⌋+1∑
p=1

c2k+1,pε
2k+1
k+1 logp ε+

+ P̃2k+1(G(τε)) · ε
2k+1
k+1 +

∞∑
m=2k+2

⌊m
k
⌋+1∑

p=0

Q̃m,p(G(τε)) · ε
m

k+1 logp ε, ε → 0+.

(∗) ε 7→ τε the so-called continuous critical time (MRRZ 2019)
(∗) G : [0,+∞) → R 1-periodic, G(s) = 1− s, s ∈ (0, 1), G(0) = 0

(∗) P̃2k+1 resp. Q̃m,p , polynomials whose coefficients in general depend on coefficients

of f and initial condition x0.



Asymptotic expansion of the continuous tube
function

f parabolic

Proposition (MRR 2020)

V c
f (ε) ∼ 2

1
k+1 a−

1
k+1

k + 1

k
·ε

1
k+1 +

k∑
m=2

am · ε
m

k+1 + 2ρ
k − 1

k
· ε log ε+ bk+1(x0)ε

+
∞∑

m=k+2

⌊m
k
⌋+1∑

p=0

cm,pε
m

k+1 logp ε, ε → 0+.

(∗) c2k+1,0 resp. cm,p , m ≥ 2k + 2, p = 0, . . . , ⌊m
k
⌋+ 1, are free coefficients of

polynomials P̃2k+1 resp. Q̃m,p

(∗) only the coefficient bk+1(x0) depends on the initial condition x0.



Distributional expansion of the tube function for
parabolic orbits

f parabolic

Proposition (MRR 2020)

Vf (ε) ∼D 2
1

k+1 a−
1

k+1
k + 1

k
· ε

1
k+1 +

k∑
m=2

am · ε
m

k+1 + 2ρ
k − 1

k
· ε log ε+ bk+1(x0)ε+

+
2k∑

m=k+2

⌊m
k
⌋+1∑

p=0

cm,pε
m

k+1 logp ε+

⌊ 2k+1
k

⌋+1∑
p=1

c2k+1,pε
2k+1
k+1 logp ε+

+ d2k+1,0(x0) · ε
2k+1
k+1 +

∞∑
m=2k+2

⌊m
k
⌋+1∑

p=0

dm,p(x0) · ε
m

k+1 logp ε, ε → 0+.

Here,
d2k+1,0(x0) :=

∫ 1
0 P̃2k+1(s) ds,

dm,p(x0) :=
∫ 1
0 Q̃m,p(s) ds, m ≥ 2k + 2, p = 0, . . . ,

⌊
m
k

⌋
+ 1,

the mean values of 1-periodic functions P̃2k+1 ◦ G and Q̃m,p ◦ G .



Fractal zeta function for the general non-model case

Arbitrary parabolic germ

f (x) = x − axk+1 + o(xk+1) ∈ Diff(R+, 0)

Theorem (B MRR 2020, Complex dimensions for arbitrary
parabolic orbits)

f ∈ Diff(R+, 0), of formal class (k , ρ), k ∈ N, ρ ∈ R.
1 The distance zeta function ζf (s) can be meromorphically

extended to C.
2 In any open right half-plane WM := {Re s > 1− M

k+1}, where
M ∈ N, M > k + 2, given as:



Theorem

For s ∈ WM := {Re s > 1− M
k+1}:

ζf (s) =(1− s)
k∑

m=1

am

s −
(
1− m

k+1

) + (1− s)
(bk+1(x0)

s
+

ak+1

s2

)
+

+(1− s)
M−1∑

m=k+2

⌊m
k
⌋+1∑

p=0

(−1)pp! · cm,p(x0)(
s −

(
1− m

k+1

))p+1
+ g(s),

g(s) holomorphic in WM .

∗ the coefficients in principal parts of poles real, with dependence on x0,
as noted!
∗ related to the coefficients of the asymptotic expansion of the tube
function of the orbit!

∗ new wrt model: higher-order poles correspond to logarithmic terms

in the asymptotic expansion of the tube function due to ρ ̸= 0



Formal class from complex dimensions

Corollary (MRR Formal class of a parabolic germ from
complex dimensions)

Let f be a parabolic germ f (x) = x − axk+1 + o(xk+1), a > 0
from the formal class (k , ρ). Then ζf is meromorphic in C and the
formal class is encoded in two complex dimensions:

1 the simple pole with largest real part, ω1 = 1− 1
k+1 , and its

residue:

Res(ζf (s), ω1) =
a1

k + 1
=

2
1

k+1 a−
1

k+1

k
,

2 the double pole with largest real part, ωk+1 = 0, and the
residue:

Res(s · ζf (s), ωk+1) = ak+1 = 2ρ
k − 1

k
.



Model hyperbolic orbits

fa(x) = ax , 0 < a < 1

Ofa(x0) = {x0an : n ∈ N0}
Lfa = {ℓj = f ◦ja (x0)− f

◦(j+1)
a (x0) = x0(1− a)aj : j ∈ N0}

ζfa(s) =
21−s

s

∞∑
j=0

ℓsj =
21−sx s0(1− a)s

s
· 1

1− as

extends meromorphically to all of C from {Re s > 0}
double pole at s = 0 and simple poles at

sk =
2kπi

log a
, k ∈ Z

Vf (ε) = − 2
log aε(− log ε) + εH

(
loga

2ε
x0(1−a)

)
,

H : [0,+∞) → R is 1-periodic and bounded



Parabolic orbits vs. hyperbolic orbits and fractality

!! parabolic case: oscillations of the coefficients can be
smoothened by integration
!! hyperbolic case: the oscillations are mulitiplicative periodic and
cannot be smoothened distributionally

(a) parabolic orbits: τε ∼ ε−
1

k+1 , d
dετε ∼ ε−1− 1

k+1 , where
1 + 1

k+1 > 1

(b) hyperbolic orbits: τε ∼ − log ε, d
dετε ∼ −ε−1

The consequence:
(∗) in the parabolic case no oscillatory coefficients in the
distributional expansion (seen in poles of zeta function as no
non-real complex dimensions)
(∗) in the hyperbolic case oscillatory coefficients remain (seen in
poles of zeta function as purely imaginary complex dimensions,
similarly as for Cantor sets (LF 2013, LRZ 2017)

? who is fractal ?
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