## Fractal zeta functions generated by orbits of parabolic diffeomorphisms

### Goran Radunović, University of Zagreb

Joint work with P. Mardešić and M. Resman

June 5th, 2022

#### 7th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals, June 4th-8th, 2022

This work has been supported by the Croatian Science Foundation PZS-2019-02-30, UIP-2017-05-1020 and the bilateral Hubert-Curien Cogito grant 2021-22.

## Motivation

• let f be an attracting germ of a diffeo. on  $\mathbb{R}$  at a fixed point 0 and let

$$\mathcal{O}_f(x_0):=\{f^{\circ n}(x_0): n\in\mathbb{N}\},\$$

be its orbit by f.



- Can one read the formal (or even analytic) class of f from the "fractality" of its one orbit?
- The tube function of the orbit:

$$V_f := V_{f,x_0} \colon \varepsilon \mapsto |\mathcal{O}_f(x_0)_{\varepsilon} \cap [0,x_0]|$$

## Relative fractal drum $(A, \Omega)$

- $\emptyset \neq A \subset \mathbb{R}^N$ ,  $\Omega \subset \mathbb{R}^N$ , Lebesgue measurable, i.e.,  $|\Omega| < \infty$
- **upper** *r*-dimensional Minkowski content of  $(A, \Omega)$ :

$$\overline{\mathcal{M}}^r(A,\Omega):=\limsup_{\delta o 0^+}rac{|A_\delta\cap\Omega|}{\delta^{N-r}}$$

• upper Minkowski dimension of  $(A, \Omega)$ :

 $\overline{\dim}_B(A,\Omega) = \inf\{r \in \mathbb{R} : \overline{\mathcal{M}}^r(A,\Omega) = 0\}$ 

Iower Minkowski content and dimension defined via liminf
 if ∃D ∈ ℝ such that

$$0 < \underline{\mathcal{M}}^{D}(A, \Omega) = \overline{\mathcal{M}}^{D}(A, \Omega) < \infty,$$

we say  $(A, \Omega)$  is **Minkowski measurable**; in that case  $D = \dim_B(A, \Omega)$ 

### The relative distance zeta function LRZ2017

• 
$$(A, \Omega)$$
 RFD in  $\mathbb{R}^N$ ,  $s \in \mathbb{C}$  and fix  $\delta > 0$ 

• the distance zeta function of  $(A, \Omega)$ :

$$\zeta_{\mathcal{A},\Omega}(s;\delta) := \int_{\mathcal{A}_{\delta}\cap\Omega} d(x,\mathcal{A})^{s-N} dx$$

- dependence on  $\delta$  is not essential
- holomorphic on  $\{\operatorname{Re} s > \overline{\dim}_B(A, \Omega)\}$
- the complex dimensions of (A, Ω) are defined as the poles of ζ<sub>A,Ω</sub>
- in our case  $A = \mathcal{O}_f(x_0)$  and  $\Omega = [0, x_0]$ :

$$\zeta_f(s) = \zeta_{f,x_0}(s) := \int_0^{x_0} d(x, \mathcal{O}_f(x_0))^{s-1} dx,$$

### Fractal tube formulas for relative fractal drums

An asymptotic formula for the **tube function** 

 $t\mapsto V_{A,\Omega}(t):=|A_t\cap \Omega| ext{ as } t o 0^+ ext{ in terms of } \zeta_{A,\Omega} ext{ .}$ 

#### Theorem (Simplified pointwise formula with error term)

α < dim<sub>B</sub>(A, Ω) < N; ζ<sub>A,Ω</sub> satisfies suitable rational decay conditions (*d*-languidity) on the half-plane W := {Re s > α}, then:

$$V_{A,\Omega}(t) = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega}, \mathbf{W})} \operatorname{res}\left(\frac{t^{N-s}}{N-s}\zeta_{A,\Omega}(s), \omega\right) + O(t^{N-\alpha}).$$

 if we allow polynomial growth of ζ<sub>A,Ω</sub>, in general, we get a tube formula in the sense of Schwartz distributions

### Fractal tube formulas for relative fractal drums

An asymptotic formula for the **tube function**  $t \mapsto V_{A,\Omega}(t) := |A_t \cap \Omega| \text{ as } t \to 0^+ \text{ in terms of } \zeta_{A,\Omega}.$ 

#### Theorem (Case of simple poles)

• In case the the fractal zeta function has only simple poles:

$$V_{A,\Omega}(t) = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega}, \mathbf{W})} \frac{t^{N-\omega}}{N-\omega} \operatorname{res}\left(\zeta_{A,\Omega}(s), \omega\right) + O(t^{N-\alpha}).$$

- a pole  $\omega$  of order m generates terms of type  $t^{N-\omega}(-\log t)^{k-1}$  for  $k = 1, \dots, m$
- if  $\omega \in \mathbb{C} \setminus \mathbb{R}$  then the term  $t^{N-\omega} = t^{N-\operatorname{Re}\omega} e^{-i \operatorname{Im} \omega \log t}$ introduces oscillations in the order  $t^{N-\operatorname{Re}\omega}$  which are multiplicative periodic with period  $T = e^{2\pi/\operatorname{Im} \omega}$

### Parabolic analytic germs

## $f(x) = x - ax^{k+1} + o(x^{k+1}), \ a > 0, \ x \to 0.$ (1)

Formal change of variables in the class of formal power series x + x<sup>2</sup>R[[x]] reduces f to a normal form which is a time-one map of a simple vector field:

$$f_0(x) = \operatorname{Exp}\left(-\frac{x^{k+1}}{1-\rho x^k}\frac{d}{dx}\right) \text{.id}, \ k \in \mathbb{N}, \ \rho \in \mathbb{R}.$$
 (2)

Parabolic germs of the type (2) are called *model diffeomorphisms*.

• the pair  $(k, \rho) \in \mathbb{N} \times \mathbb{R}$  is called the *formal invariant* of f.

# Precise computations for the simplest model case of germs when $\rho = 0$ (MRR 2020)

\* *Model cases* with residual invariant  $\rho = 0$  and multiplicity  $k \in \mathbb{N}$ \* time-one maps of simple vector fields  $x' = -x^{k+1}$ :

$$f_k(x) := \operatorname{Exp}(-x^{k+1}rac{d}{dx}).\mathrm{id} = rac{x}{(1+kx^k)^{1/k}} = x - x^{k+1} + o(x^{k+1}), \ k \in \mathbb{N}.$$

#### Proposition (The complex dimensions of orbits, MRR 2020)

 $\zeta_{f_k}(s)$ ,  $\operatorname{Re}(s) > \frac{k}{k+1}$ , the distance zeta function of an orbit  $\mathcal{O}_{f_k}(x_0)$  of a model parabolic germ.

- **1**  $\zeta_{f_k}(s)$  can be meromorphically extended to  $\mathbb{C}$ ,
- 2 the poles of  $\zeta_{f_k}(s)$  located at  $1 \frac{1}{k+1} = \frac{k}{k+1}$  and at (a subset of) the set of points  $1 \frac{m}{k+1}$ ,  $m \in \mathbb{N}$ , all simple
- 3 the Minkowski (box) dimension of  $\mathcal{O}_{f_k}(x_0)$  is  $D = \frac{k}{k+1}$ , the pole maximal real part

### Proposition continued...

### Proposition

Precise description of poles:

$$\zeta_{f_k}(s) = \frac{2^{1-s}}{s} \sum_{n=0}^M \tilde{Z}_k(s,n) \zeta_{\frac{1}{k \times_0^k}} \left(\frac{k+1}{k}s+n\right) + R(s),$$

R(s) defined and **holomorphic** for  $\operatorname{Re} s > -\frac{Mk}{k+1}$ . The functions  $\tilde{Z}_k(s, n)$  entire and  $\tilde{Z}_k(s, n) =$ 

$$k^{-\frac{k+1}{k}s} \sum_{m=0}^{n} (-k)^{m} {s \choose m} \sum_{i=0}^{m} (-1)^{i} {m \choose i} \sum_{j=0}^{i} (-k)^{-j} {i \choose j} {\frac{i-m}{k} \choose n+m-j}.$$

Hurwitz zeta function:  $\zeta_a(s) := \sum_{j=0}^{\infty} \frac{1}{(j+a)^s}, \ a > 0, \ \text{Re}(s) > 1$ 

## Generalized asymptotic expansion of the tube function - coefficients allowed to be oscillatory

 $f(x) = x - ax^{k+1} + o(x^{k+1}) \in \operatorname{Diff}(\mathbb{R}, 0)$ , a > 0, arbitrary parabolic germ

'Problem' noted in (R, 2014), (MRRZ, 2019): (\*) the tube function  $\varepsilon \mapsto V_f(\varepsilon)$  fails to have a full asymptotic expansion in power-logarithm scale,

(\*) oscillatory coefficient at order  $O(\varepsilon^{\frac{2k+1}{k+1}}), \ \varepsilon \to 0.$ 

# The continuous tube function-a 'dynamical smoothening' of the expansion (MRRZ 2019)

 $V_f(\varepsilon) = |\mathcal{O}_f(x_0)_{\varepsilon}| = |T_{\varepsilon}| + |N_{\varepsilon}| = 2\varepsilon \cdot n_{\varepsilon} + (f^{n_{\varepsilon}}(x_0) + 2\varepsilon), \ \varepsilon > 0$ 



(\*)  $\varepsilon \mapsto n_{\varepsilon}$  the so-called **discrete critical time** 'separating' tail and nucleus - jump function at  $\varepsilon_n = \frac{f^{\circ n}(x_0) - f^{\circ (n+1)}(x_0)}{2} \to 0, n \to \infty$ . (\*)  $n_{\varepsilon} \in \mathbb{N}$  determined by two inequalities:

$$ert f^{\circ(n_{arepsilon}-1)}(x_0) - f^{\circ n_{arepsilon}}(x_0) ert \geq 2arepsilon, \ ert f^{\circ n_{arepsilon}}(x_0) - f^{\circ(n_{arepsilon}+1)}(x_0) ert < 2arepsilon.$$

(\*) the continuous critical time (MRRZ 2019)  $\varepsilon \mapsto \tau_{\varepsilon}$ - an analytic, dynamical 'approximation' of  $n_{\varepsilon}$ - relies on *embedding of f as the time-one map in a flow* 

 $\{f^t: t \in \mathbb{R}\}$ :

$$f^{\tau_{\varepsilon}}(x_0) - f^{\tau_{\varepsilon}+1}(x_0) = 2\varepsilon.$$

Note:  $n_{\varepsilon} = \lfloor \tau_{\varepsilon} \rfloor + 1$ ,  $\varepsilon > 0$ 

The continuous tube function  $\varepsilon \mapsto V_f^c(\varepsilon)$ 

$$V_f^c(\varepsilon) = 2\varepsilon \tau_{\varepsilon} + (f^{\tau_{\varepsilon}}(x_0) + 2\varepsilon), \ \varepsilon > 0.$$

(\*) analytic in  $\varepsilon \in (0, \delta)$ 

(\*) expansion coincides with the expansion of  $\varepsilon \mapsto V_f(\varepsilon)$  up to the first oscillatory term

(\*) full asymptotic expansion in a power-log scale, no oscillatory coefficients!

## Generalized asymptotic expansion of tube function-coefficients oscillatory functions

#### Proposition (MRR 2020)

A **generalized asymptotic expansion** of the tube function with full description of **oscillatory** coefficients:

$$\begin{split} V_{f}(\varepsilon) &\sim 2^{\frac{1}{k+1}} a^{-\frac{1}{k+1}} \frac{k+1}{k} \cdot \varepsilon^{\frac{1}{k+1}} + \sum_{m=2}^{k} a_{m} \cdot \varepsilon^{\frac{m}{k+1}} + 2\rho \frac{k-1}{k} \cdot \varepsilon \log \varepsilon + b_{k+1}(x_{0})\varepsilon + \\ &+ \sum_{m=k+2}^{2k} \sum_{p=0}^{\lfloor \frac{m}{k} \rfloor + 1} c_{m,p} \varepsilon^{\frac{m}{k+1}} \log^{p} \varepsilon + \sum_{p=1}^{\lfloor \frac{2k+1}{k} \rfloor + 1} c_{2k+1,p} \varepsilon^{\frac{2k+1}{k+1}} \log^{p} \varepsilon + \\ &+ \tilde{P}_{2k+1}(G(\tau_{\varepsilon})) \cdot \varepsilon^{\frac{2k+1}{k+1}} + \sum_{m=2k+2}^{\infty} \sum_{p=0}^{\lfloor \frac{m}{k} \rfloor + 1} \tilde{Q}_{m,p}(G(\tau_{\varepsilon})) \cdot \varepsilon^{\frac{m}{k+1}} \log^{p} \varepsilon, \ \varepsilon \to 0^{+}. \end{split}$$

(\*)  $\varepsilon \mapsto \tau_{\varepsilon}$  the so-called continuous critical time (MRRZ 2019) (\*)  $G : [0, +\infty) \to \mathbb{R}$  1-periodic, G(s) = 1 - s,  $s \in (0, 1)$ , G(0) = 0(\*)  $\tilde{P}_{2k+1}$  resp.  $\tilde{Q}_{m,p}$ , polynomials whose coefficients in general depend on coefficients of f and initial condition  $x_0$ .

## Asymptotic expansion of the continuous tube function

f parabolic

### Proposition (MRR 2020)

$$\begin{split} V_{f}^{c}(\varepsilon) &\sim 2^{\frac{1}{k+1}} a^{-\frac{1}{k+1}} \frac{k+1}{k} \cdot \varepsilon^{\frac{1}{k+1}} + \sum_{m=2}^{k} a_{m} \cdot \varepsilon^{\frac{m}{k+1}} + 2\rho \frac{k-1}{k} \cdot \varepsilon \log \varepsilon + b_{k+1}(x_{0})\varepsilon \\ &+ \sum_{m=k+2}^{\infty} \sum_{p=0}^{\lfloor \frac{k}{k} \rfloor + 1} c_{m,p} \varepsilon^{\frac{m}{k+1}} \log^{p} \varepsilon, \ \varepsilon \to 0^{+}. \end{split}$$

(\*)  $c_{2k+1,0}$  resp.  $c_{m,p}$ ,  $m \ge 2k+2$ ,  $p = 0, \ldots, \lfloor \frac{m}{k} \rfloor + 1$ , are free coefficients of polynomials  $\tilde{P}_{2k+1}$  resp.  $\tilde{Q}_{m,p}$ 

(\*) only the coefficient  $b_{k+1}(x_0)$  depends on the initial condition  $x_0$ .

## Distributional expansion of the tube function for parabolic orbits

f parabolic

### Proposition (MRR 2020)

$$\begin{split} V_{f}(\varepsilon) \sim_{\mathcal{D}} 2^{\frac{1}{k+1}} a^{-\frac{1}{k+1}} \frac{k+1}{k} \cdot \varepsilon^{\frac{1}{k+1}} + \sum_{m=2}^{k} a_{m} \cdot \varepsilon^{\frac{m}{k+1}} + 2\rho \frac{k-1}{k} \cdot \varepsilon \log \varepsilon + b_{k+1}(x_{0})\varepsilon + \\ &+ \sum_{m=k+2}^{2k} \sum_{p=0}^{\lfloor \frac{m}{k} \rfloor + 1} c_{m,p} \varepsilon^{\frac{m}{k+1}} \log^{p} \varepsilon + \sum_{p=1}^{\lfloor \frac{2k+1}{k} \rfloor + 1} c_{2k+1,p} \varepsilon^{\frac{2k+1}{k+1}} \log^{p} \varepsilon + \\ &+ d_{2k+1,0}(x_{0}) \cdot \varepsilon^{\frac{2k+1}{k+1}} + \sum_{m=2k+2}^{\infty} \sum_{p=0}^{\lfloor \frac{m}{k} \rfloor + 1} d_{m,p}(x_{0}) \cdot \varepsilon^{\frac{m}{k+1}} \log^{p} \varepsilon, \ \varepsilon \to 0^{+}. \end{split}$$

Here,  $\begin{aligned}
&d_{2k+1,0}(x_0) := \int_0^1 \tilde{P}_{2k+1}(s) \, ds, \\
&d_{m,p}(x_0) := \int_0^1 \tilde{Q}_{m,p}(s) \, ds, \ m \ge 2k+2, \ p = 0, \dots, \left\lfloor \frac{m}{k} \right\rfloor + 1, \\
&\text{the mean values of 1-periodic functions } \tilde{P}_{2k+1} \circ G \text{ and } \tilde{Q}_{m,p} \circ G.
\end{aligned}$  Arbitrary parabolic germ

$$f(x) = x - ax^{k+1} + o(x^{k+1}) \in \operatorname{Diff}(\mathbb{R}_+, 0)$$

Theorem (B MRR 2020, Complex dimensions for arbitrary parabolic orbits)

- $f \in \text{Diff}(\mathbb{R}_+, 0)$ , of formal class  $(k, \rho)$ ,  $k \in \mathbb{N}$ ,  $\rho \in \mathbb{R}$ .
  - The distance zeta function ζ<sub>f</sub>(s) can be meromorphically extended to C.
  - 2 In any open right half-plane  $W_M := \{\operatorname{Re} s > 1 \frac{M}{k+1}\}$ , where  $M \in \mathbb{N}, M > k+2$ , given as:

#### Theorem

For 
$$s \in W_M := \{\operatorname{Re} s > 1 - \frac{M}{k+1}\}$$
:

$$\begin{aligned} \zeta_f(s) = &(1-s) \sum_{m=1}^k \frac{a_m}{s - \left(1 - \frac{m}{k+1}\right)} + (1-s) \left(\frac{b_{k+1}(x_0)}{s} + \frac{a_{k+1}}{s^2}\right) + \\ &+ (1-s) \sum_{m=k+2}^{M-1} \sum_{p=0}^{\lfloor \frac{m}{k} \rfloor + 1} \frac{(-1)^p p! \cdot c_{m,p}(x_0)}{\left(s - \left(1 - \frac{m}{k+1}\right)\right)^{p+1}} + g(s), \end{aligned}$$

g(s) holomorphic in  $W_M$ .

 $\ast$  the coefficients in principal parts of poles real, with dependence on  $x_0,$  as noted!

 $\ast$  related to the coefficients of the asymptotic expansion of the tube function of the orbit!

\* new wrt model: higher-order poles correspond to logarithmic terms

### Formal class from complex dimensions

## Corollary (MRR Formal class of a parabolic germ from complex dimensions)

Let f be a parabolic germ  $f(x) = x - ax^{k+1} + o(x^{k+1})$ , a > 0from the formal class  $(k, \rho)$ . Then  $\zeta_f$  is meromorphic in  $\mathbb{C}$  and the formal class is encoded in two complex dimensions:

**1** the simple pole with largest real part,  $\omega_1 = 1 - \frac{1}{k+1}$ , and its residue:

$$\operatorname{Res}(\zeta_f(s),\omega_1) = \frac{a_1}{k+1} = \frac{2^{\frac{1}{k+1}}a^{-\frac{1}{k+1}}}{k}$$

**2** the double pole with largest real part,  $\omega_{k+1} = 0$ , and the residue:

$$\operatorname{Res}(\boldsymbol{s}\cdot\zeta_f(\boldsymbol{s}),\omega_{k+1})=\boldsymbol{a}_{k+1}=2\rho\frac{k-1}{k}.$$

### Model hyperbolic orbits

$$f_{a}(x) = ax, \ 0 < a < 1$$

$$\mathcal{O}_{f_{a}}(x_{0}) = \{x_{0}a^{n} : n \in \mathbb{N}_{0}\}$$

$$\mathcal{L}_{f_{a}} = \{\ell_{j} = f_{a}^{\circ j}(x_{0}) - f_{a}^{\circ (j+1)}(x_{0}) = x_{0}(1-a)a^{j} : j \in \mathbb{N}_{0}\}$$

$$\zeta_{f_{a}}(s) = \frac{2^{1-s}}{s} \sum_{j=0}^{\infty} \ell_{j}^{s} = \frac{2^{1-s}x_{0}^{s}(1-a)^{s}}{s} \cdot \frac{1}{1-a^{s}}$$

extends meromorphically to all of C from {Re s > 0}
double pole at s = 0 and simple poles at

$$s_k = rac{2k\pi i}{\log a}, \ k \in \mathbb{Z}$$

•  $V_f(\varepsilon) = -\frac{2}{\log a}\varepsilon(-\log \varepsilon) + \varepsilon H\left(\log_a \frac{2\varepsilon}{x_0(1-a)}\right)$ ,  $H: [0, +\infty) \to \mathbb{R}$  is 1-periodic and bounded

## Parabolic orbits vs. hyperbolic orbits and fractality

!! parabolic case: oscillations of the coefficients can be smoothened by integration !! hyperbolic case: the oscillations are mulitiplicative periodic and

cannot be smoothened distributionally

(a) parabolic orbits:  $\tau_{\varepsilon} \sim \varepsilon^{-\frac{1}{k+1}}$ ,  $\frac{d}{d\varepsilon}\tau_{\varepsilon} \sim \varepsilon^{-1-\frac{1}{k+1}}$ , where  $1 + \frac{1}{k+1} > 1$ 

(b) hyperbolic orbits:  $au_{arepsilon} \sim -\log arepsilon$ ,  $rac{d}{darepsilon} au_{arepsilon} \sim -arepsilon^{-1}$ 

The consequence:

(\*) in the parabolic case **no oscillatory coefficients in the distributional expansion** (seen in poles of zeta function as **no non-real complex dimensions**)

(\*) in the hyperbolic case **oscillatory coefficients remain** (seen in poles of zeta function as **purely imaginary complex dimensions**, similarly as for Cantor sets (LF 2013, LRZ 2017)

? who is fractal ?

## The bibliography

(MRR 2020) Mardešić, Radunovic, Resman, Fractal zeta functions of orbits of parabolic diffeomorphisms, submitted (2020), https://arxiv.org/abs/2010.05955

- (LF 2000) M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions, Birkhäuser, Boston, 2000.
- (LF 2013) M. L. Lapidus and M. van Frankenhuijsen, Fractality, Complex Dimensions, and Zeta Functions: Geometry and Spectra of Fractal Strings, second revised and enlarged edition (of the 2006 edn.), Springer Monographs in Mathematics, Springer, New York, 2013.
- (LRZ 2017) M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions, Springer Monographs in Mathematics, Springer, New York, 2017.
  - (R 2014) M. Resman, Epsilon-neighborhoods of orbits of parabolic diffeomorphisms and cohomological equations, *Nonlinearity* 27 (2014), 3005–3029
- ARRZ 2019) P. Mardešić, M. Resman, J. P. Rolin, V. Županović, Tubular neighborhoods of orbits of Dulac maps, *Journal of Dynamics and Differential Equations* 1 (2019), 1-49.