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Tra�c noise absorbing wall

“Fractal wall” TM, porous material is the cement-wood (acoustic absorbent),
Patent Ecole Polytechnique-Colas, Canadian and US patent
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Absorption of the “ Fractal wall”
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Acoustic anechoic chambers
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Helmholtz problem for a fixed frequency and a noise source

Γ

ΓNeu

ΓNeu

ΓDir Ω Porous
G

D


4u+ ω2u = f (x) x ∈ Ω,

u = g(x) on ΓDir,
∂u
∂n = 0 on ΓNeu,

∂u
∂n + α(x, ω) Tr u = 0 on Γ, Re(α) > 0 and Im(α) < 0

F. Magoulès, T.P.K. Nguyen, P. Omnes, ARP. SICON, 2021; M. Hinz, ARP, A. Teplyaev, SICON, 2021.
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Damping by the boundary: evolutive in time model (Re(α) > 0 et Im(α) < 0)



∂2t u−4u = e−iωtf (x),

u|ΓDir = 0, ∂u
∂n

∣∣∣∣
ΓNeu

= 0,

∂u
∂n −

1
ωIm(α(x)) Tr ∂tu+ Re(α(x)) Tr u|Γ = 0,

u|t=0 = u0, ∂tu|t=0 = u1

X(Ω) =
{
u ∈ H1(Ω)| Tr u|ΓDir = 0

}
× L2(Ω)

‖(u, v)‖2X(Ω) =

∫
Ω

(
|∇xu|2 + |v|2

)
dx +

∫
Γ
Re(α(x))|Tr u|2dµ.

∂t
(
‖(u, ∂tu)‖2X(Ω)

)
=
2
ω

∫
Γ
Im(α(x))|Tr ∂tu|2dµ.

C. Bardos, J. Rauch, Asymptotic Analysis, 1994
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Nature complexity and their models

Porous materials
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Irregularity of boundaries
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Irregularity of boundaries

Antigiogenesis of cancerous tumours
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Dirichlet Poisson problem for f ∈ D(Ω)

For an arbitrary bounded Ω ⊂ Rn{
−∆u = f in Ω, (f ∈ L2(Ω))

u = 0 on ∂Ω,
(1)

Let H10(Ω) = D(Ω)
‖·‖H1(Ω) .

∃ !u ∈ H10(Ω) : ∀φ ∈ H10(Ω) (∇u,∇φ)L2(Ω) = (f , φ)L2(Ω)
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Regularity of the weak solution related with the regularity of the boundary for
f ∈ D(Ω)

Regular boundary ⇐⇒ regularity of the weak solution

1. ∂Ω ∈ C∞: existence of classical derivatives, classical solution

2. ∂Ω ∈ C2: interior and global regularity, i.e. u ∈ C∞(Ω)∩C1(Ω)∩H2(Ω) L.C. Evans, 2010

3. Lipschitz boundaries: ∃ν a.e. on ∂Ω, u ∈ C∞(Ω) ∩ C(Ω), but not necessarily in
H2(Ω) (yes, if Ω is convex P. Grisvard 1974)

4. self-similar fractal boundaries of a NTA-domain:
@ν ∀x ∈ ∂Ω and ∃∂u∂ν only in the weak sense;

u ∈ H10(Ω) ∩ C∞(Ω) ∩ C(Ω), but u /∈ H2(Ω)

Nyström, 1996, von Koch’s snowflake

5. general case
u ∈ H10(Ω) ∩ C∞(Ω)

14 / 43
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Examples of self-similar fractal boundaries

2 < d = log(13)
log(3) ≈ 2.33 < 3 (Wikipedia)
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Mixed boundary Poisson problem on non-Lipschitz domains: open problem

Ω ⊂ Rn be bounded domain with a compact non-Lipschitz boundary
∂Ω = ΓD ∪ ΓN ∪ ΓR or ∂Ω = ΓR

−∆u = f in Ω, (f ∈ L2(Ω))

u = 0 on ΓD,
∂u
∂n = 0 on ΓN,
∂u
∂n + aTru = 0 on ΓR, (a > 0)

V(Ω) := {u ∈ H1(Ω)| TrΓDu = 0}.

endowed with the following norm

‖u‖2V(Ω) =

∫
Ω
|∇u|2 dx + a

∫
ΓR

|Tr∂Ωu|2dµ,

∀f ∈ L2(Ω) ∃!u ∈ V(Ω) : ∀v ∈ V(Ω) (u, v)V(Ω) = (f , v)L2(Ω).

16 / 43
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Mixed boundary Poisson problem on non-Lipschitz domains: open problem

• D. Daners, Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc. 352(9), 4207–4236 (2000).

µ = Hn−1, if Hn−1(ΓR) = +∞, then Tru|ΓR = 0 (Dirichlet boundary condition).

• R. Capitanelli, Robin boundary condition on scale irregular fractals. Commun. Pure Appl. Anal. 9(5), 1221–1234 (2010).

Von Koch type fractal boundaries in R2, d-measure.
• A. Dekkers, ARP, A. Teplyaev, Calc. Var. (2022);

M. Hinz, ARP, A. Teplyaev, submitted, preprint

Rn, µ is an upper d-regular Borel measure, n− 2 < d < n.
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The “worst” boundary

“Sobolev admissible domains”:

We consider the Sobolev extension domains Ω with compact boundaries ∂Ω

defined by the support of a positive Borel measure µ on Rn

∂Ω = suppµ,

which in addition is upper d-regular for a fixed d ∈]n− 2,n[: there is a constant
cd > 0 such that

µ(Br(x)) ≤ cdrd, x ∈ ∂Ω, 0 < r ≤ 1. (2)

(=⇒ dimH ∂Ω ≥ d)

19 / 43
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Examples, remarks

• d-sets: dimH ∂Ω = d > 0
∃c1, c2 > 0,

c1rd ≤ µ(∂Ω ∩ Br(x)) ≤ c2rd, for ∀ x ∈ ∂Ω, 0 < r ≤ 1,

• Lipschitz and more regular boundaries
• bounded dimension boundaries

n− 2 < dimH ∂Ω < n

20 / 43
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Definition of Wk,p-extension domains

Definition
A domain Ω ⊂ Rn is called a Wk,p-extension domain (for k ∈ N∗, 1 ≤ p ≤ ∞) if
there exists a bounded linear extension operator E : Wk,p(Ω)→ Wk,p(Rn):

∀u ∈ Wk,p(Ω) ∃v = Eu ∈ Wk,p(Rn) with v|Ω = u and C(k,p,Ω) > 0 :

‖v‖Wk,p(Rn) ≤ C‖u‖Wk,p(Ω).

Equivalently, there exists a linear continuous trace/restriction operator

Tr : Wk,p(Rn)→ Wk,p(Ω).

Geometrical properties of Ω ensuring that Ω is a Wk,p-extension domain ????

21 / 43
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Known Wk,p-extension domains

Theorem
If a domain Ω ∈ D =⇒ Ω is a Wk,p-extension domain.

1. Calderon [1961], Stein [1970] :

D = {Lipschitz domains} =: DLip

2. Jones [1981] : (Dloc unif ) DLip)

D = {locally uniform or (ε, δ)-domains} =: Dloc unif

Theorem (n = 2, Jones [1981])
Let DR2 = Dloc unif ∩ {finitely connected domains in R2}. Then

Ω ∈ DR2 ⇐⇒ Ω is a Wk,p-extension domain.

Herron, Koskela [1991]: a bounded Ω ∈ Dloc unif is an uniform domain.
22 / 43
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Locally uniform or (ε, δ)-domains (ε > 0, 0 < δ ≤ ∞)

Definition
An open connected subset Ω of Rn is an (ε, δ)-domain,

if whenever x, y ∈ Ω and |x − y| < δ, (thus locally)

there is a rectifiable arc γ ⊂ Ω with length `(γ) joining x to y and satisfying

1. `(γ) ≤ |x−y|ε (uniformly locally quasiconvex) and
2. d(z, ∂Ω) ≥ ε|x − z| |y−z||x−y| for z ∈ γ.

Theorem (n = 2, Jones [1981])
A bounded and finitely connected domain Ω ∈ Dloc unif ⇐⇒ its boundary consists
of a finite number of points and quasicircles.

23 / 43
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d-Sets and (ε, δ)-domains A. Jonsson, H. Wallin,1984

• Ω is an n-set or satisfies “the measure density condition”

∃c > 0 ∀x ∈ Ω, ∀r ∈]0, 1] λn(Br(x) ∩ Ω) ≥ Cλn(Br(x)) = crn.

• An n-set Ω cannot be “thin” close to its boundary ∂Ω.
• n-sets ) Dloc unif ) DLip.

24 / 43
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Optimal class of Wk,p-extension domains

Theorem (Hajłasz, Koskela, and Tuominen [2008])
A domain Ω ⊂ Rn is a Wk,p-extension domain

1. for 1 ≤ p <∞, k ≥ 1, k ∈ N =⇒ Ω is an n-set.
2. for p =∞ and k = 1⇐⇒ Ω is uniformly locally quasiconvex.

3. for 1 < p <∞, k ≥ 1, k ∈ N⇐⇒ Ω is an n-set and Wk,p(Ω) = Ck,p(Ω) with
norms’ equivalence.

By Ck,p(Ω) is denoted the space of the fractional sharp maximal functions:
Ck,p(Ω) = {f ∈ Lp(Ω)|f ]k,Ω ∈ L

p(Ω)}, where

f ]k,Ω(x) = sup
r>0

r−k inf
P∈Pk−1

1
λn(Br(x))

∫
Br(x)∩Ω

|f − P|dy,

with the norm ‖f‖Ck,p(Ω) = ‖f‖Lp(Ω) + ‖f ]k,Ω‖Lp(Ω).

25 / 43
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Trace operator A. Jonnson, 2009

Definition
For a Sobolev extension domain Ω of Rn with suppµ = ∂Ω (for an upper regular
Borel measure µ),
the trace operator Tr : H1(Ω)→ L2(∂Ω, µ) is defined µ-a.e. by

x ∈ ∂Ω Tr u(x) = lim
r→0

1
λn(Ω ∩ Br(x))

∫
Ω∩Br(x)

u(y)dy.

B(∂Ω, µ) := Tr(H1(Ω)).

Properties of µ, suppµ = ∂Ω are important to caracterize B(∂Ω, µ):

H
1
2 (∂Ω), B2,2

1− n−d
2

(∂Ω), B2,21 (∂Ω), ...

d-sets, H. Wallin 1991
Jonnson 1997
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Trace theorem on boundaries given by upper d-regular measures µ

1. Let Ω be a bounded W1,2(Ω)-extension domain in Rn

2. Let ∂Ω = suppµ be compact, 0 < n− 2 < d ≤ n for a Borel positive measure
µ s.t.

cd > 0 µ(B(x, r)) ≤ cdrd, x ∈ ∂Ω, 0 < r ≤ 1. (3)

Then

(i) Tr : H1(Ω)→ L2(∂Ω, µ) is compact operator and ∃ cTr(n,Ω,d, cd) > 0, s. t.
‖Tr f‖L2(∂Ω,µ) ≤ cTr ‖f‖H1(Ω) , f ∈ H1(Ω).

(ii) B(∂Ω, µ) := Tr(H1(Ω)) is a Hilbert space (compact and dense in L2(∂Ω, µ))

‖ϕ‖B(∂Ω,µ) := inf{‖g‖H1(Ω) | ϕ = Tr g}.

(iii) ∃ a linear operator H∂Ω : B(∂Ω, µ)→ H1(Ω) of norm one s. t. ∀ϕ ∈ B(∂Ω, µ)

Tr(H∂Ωϕ) = ϕ.

M. Hinz, ARP, A. Teplyaev, SIAM SICON, 2021, M. Hinz, F. Magoulès, ARP, M. Rynkovskaya, A. Teplyaev, Applied Mathematical Modelling 2021.
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M. Hinz, ARP, A. Teplyaev, SIAM SICON, 2021, M. Hinz, F. Magoulès, ARP, M. Rynkovskaya, A. Teplyaev, Applied Mathematical Modelling 2021.
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Trace theorem on boundaries given by upper d-regular measures µ

1. Let Ω be a bounded W1,2(Ω)-extension domain in Rn

2. Let ∂Ω = suppµ be compact, 0 < n− 2 < d ≤ n for a Borel positive measure
µ s.t.

cd > 0 µ(B(x, r)) ≤ cdrd, x ∈ ∂Ω, 0 < r ≤ 1. (3)

Then

(i) Tr : H1(Ω)→ L2(∂Ω, µ) is compact operator and ∃ cTr(n,Ω,d, cd) > 0, s. t.
‖Tr f‖L2(∂Ω,µ) ≤ cTr ‖f‖H1(Ω) , f ∈ H1(Ω).
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M. Hinz, ARP, A. Teplyaev, SIAM SICON, 2021, M. Hinz, F. Magoulès, ARP, M. Rynkovskaya, A. Teplyaev, Applied Mathematical Modelling 2021.
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Some important corrolaries

Norm equivalence:
If Tr : H1(Ω)→ L2(∂Ω, µ) is compact, then the norm ‖u‖H1(Ω) on H1(Ω) is
equivalent to

‖u‖Tr =

(∫
Ω
|∇u|2dx +

∫
∂Ω
|Tru|2dµ

) 1
2
.

Compact embedding:
If Ω is bounded and a Sobolev extension domain, then the embedding

H1(Ω) ⊂ L2(Ω) is compact.
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Green formula

Thanks to multiple works of M. R. Lancia (d-sets, Jonsson measures), we obtain

Proposition
Let Ω ⊂ Rn be a Sobolev extension domain with a compact boundary ∂Ω = suppµ
an upper-regular positive Borel measure with n− 2 < d < n.

Then for all u, v ∈ H1(Ω) with ∆u ∈ L2(Ω)

〈∂u
∂ν
,Tr v〉B′(∂Ω,µ),B(∂Ω,µ) :=

∫
Ω
v∆udx +

∫
Ω
∇v · ∇udx.

Remark
∆u ∈ L2(Ω): ∃f ∈ L2(Ω) s.t. −∆u = f with for example ∂u

∂ν |∂Ω = 0.

=⇒ u is the weak solution of the Neumann Poisson problem.
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Mixed boundary Poisson problem

For Ω ⊂ Rn a Sobolev extension domain with a compact boundary
∂Ω = ΓD ∪ ΓN ∪ ΓR = suppµ with an upper regular Borel mesure µ and compact ΓD,
ΓR, s. t. µ(ΓD ∩ ΓN) = µ(ΓD ∩ ΓR) = µ(ΓN ∩ ΓR) = 0.

−∆u = f in Ω, (f ∈ L2(Ω))

u = 0 on ΓD,
∂u
∂n = 0 on ΓN,
∂u
∂n + aTru = 0 on ΓR, (a > 0)

V(Ω) := {u ∈ H1(Ω)| TrΓDu = 0}.
endowed with the following norm

‖u‖2V(Ω) =

∫
Ω
|∇u|2 dx + a

∫
ΓR

|Tr∂Ωu|2dµ,

∀f ∈ L2(Ω) ∃!u ∈ V(Ω) : ∀v ∈ V(Ω) (u, v)V(Ω) = (f , v)L2(Ω).

A. Dekkers, ARP, A. Teplyaev, Calculus of Variations and Partial Di�erential Equations, 2022
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Weak well-posedness of the Helmholtz problem

Let µ be a positive Borel measure: suppµ = ∂Ω is a compact in Rn.

V(Ω) = {u ∈ H1(Ω)| Tr u = 0 on ΓDir}

‖u‖2V(Ω,µ) =

∫
Ω
|∇u|2dx +

∫
Γ
Re(α)|Tr u|2dµ equivalent to ‖u‖2H1(Ω)

∀f ∈ L2(Ω), and ω > 0 there exists a unique solution u ∈ V(Ω),

∀v ∈ V(Ω)

∫
Ω
∇u · ∇v̄dx − ω2

∫
Ω
uv̄dx +

∫
Γ
αTruTr v̄ dµ = −

∫
Ω
f v̄dx

∃C(α, ω, CPoincaré(Ω)) > 0 : ‖u‖H1(Ω) ≤ C‖f‖L2(Ω)
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Methods for evolutive in time problems

• Galerkin method based on the spectral problem of −∆

• To work in the Hilbert space of the weak solutions of the Poisson problem:

D(−∆) = {u ∈ H1(Ω)| −∆u ∈ L2(Ω) :

∃f ∈ L2(Ω) ∀v ∈ V(Ω) (u, v)V(Ω) = (f , v)L2(Ω)}

• Fix point type theorems of functional analysis
• Approximation by the solutions on regular boundaries

(with converging (extension) sequence of initial conditions; ⇀ H1(Rn))

• Ωm → Ω in the sense of Hausdor� and caracteristic functions in D;
• Mosco convergence; VFm(vm, φ)→ VF(u, φ) ∀φ ∈ H(D)

• uniform on m linear bounded extension E : H1(Ωm)→ H1(D)

• (Evm)m∈N is uniformly bounded on m
• ∀t ≥ 0 Evmk |Ω → u in H1(Ω)
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Westervelt problem and known results (PhD of A. Dekkers)

∂2t u− c2∆u− ν∆∂tu = αu∂2t u+ α(∂tu)2 + f on ]0, T]× Ω,

u = 0 on ΓD × [0, T],

∂u
∂n = 0 on ΓN × [0, T],

∂u
∂n + au = 0 on ΓR × [0, T],

u(0) = u0, ∂tu(0) = u1.

34 / 43



Roughness, fractals Regularity Boundary Westervelt Conclusion Well-posedness for mixed conditions On the Mosco convergence

Westervelt problem and known results (PhD of A. Dekkers)

∂2t u− c2∆u− ν∆∂tu = αu∂2t u+ α(∂tu)2 + f on ]0, T]× Ω,

u = 0 on ΓD × [0, T],

∂u
∂n = 0 on ΓN × [0, T],

∂u
∂n + au = 0 on ΓR × [0, T],

u(0) = u0, ∂tu(0) = u1.

Bounded domain with C2 boundary:
• B. Kaltenbacher, I. Lasiecka, 2009, 2012 (∂Ω = ΓD non homogeneous) 2011

(Robin or Neumann non homogeneous) n ≤ 3;
• S. Meyer, M. Wilke, 2013 (Dirichlet non homogeneous case, all n, Wk,p).
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u = 0 on ΓD × [0, T],

∂u
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∂u
∂n + au = 0 on ΓR × [0, T],

u(0) = u0, ∂tu(0) = u1.

Bounded domain with C2 boundary:
• B. Kaltenbacher, I. Lasiecka, 2009, 2012 (∂Ω = ΓD non homogeneous) 2011

(Robin or Neumann non homogeneous) n ≤ 3;
• S. Meyer, M. Wilke, 2013 (Dirichlet non homogeneous case, all n, Wk,p).

In the Non-Lipschitz case, no access to
• the H2-regularity (thus high energy a priori estimates)
• Nyström: w ∈ H10(Ω), −∆w = f ∈ L2(Ω) ‖∇w‖L6(Ω) � C‖∆w‖L2(Ω)
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Westervelt problem and known results (PhD of A. Dekkers)

∂2t u− c2∆u− ν∆∂tu = αu∂2t u+ α(∂tu)2 + f on [0, T]× Ω,

u = 0 on ΓD × [0, T],

∂u
∂n = 0 on ΓN × [0, T],

∂u
∂n + au = 0 on ΓR × [0, T],

u(0) = u0, ∂tu(0) = u1.

Domain Ω Linear equation Nonlinear equation

∂Ω = ΓD in R2 arbitrary
NTA or

limit of NTA domains

∂Ω = ΓD in R3 arbitrary arbitrary

ΓR 6= ∅ in R2 or R3 Sobolev admissible Sobolev admissible
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Estimate of ‖u‖L∞(Ω)

Theorem
Let Ω be a bounded domain and f ∈ Lp(Ω) p ≥ 2, then for u weak solution of the
Poisson problem

‖u‖L∞(Ω) ≤ C‖f‖Lp(Ω) = C‖∆u‖Lp(Ω).

1. If ∂Ω = ΓDir
• Ω ⊂ R2 NTA domains (Nyström (1994)),
• Ω ⊂ R3 arbitrary domain (Xie (1991)).

2. If ∂Ω = ΓRob and Ω ⊂ Rn

• Daners (2000): p > n for n− 1-dimensional boundaries, C = C̃max
(
1, 1a
)

• A. Dekkers, ARP: p ≥ 2 for Sobolev admissible domains;

3. If ∂Ω = ΓRob ∪ ΓDir ∪ ΓNeu, Ω ⊂ Rn

• A. Dekkers, ARP, A. Teplyaev, 2022: p ≥ 2, if Ω is (ε,∞)-domain, then C = C(ε,n, CP), but not on
a.

35 / 43



Roughness, fractals Regularity Boundary Westervelt Conclusion Well-posedness for mixed conditions On the Mosco convergence

Mixed problem for the Westervelt equation, ν > 0, p = 2

Theorem
Let Ω be bounded Sobolev admissible domain of R2 or R3.
For all φ ∈ L2(R+; V(Ω)) with u(0) = u0 ∈ D(−∆) and ∂tu(0) = u1 ∈ V(Ω),
f ∈ L2(R+; L2(Ω)),

‖f‖L2(R+;L2(Ω)) + ‖u0‖D(−∆) + ‖u1‖V(Ω) ≤
ν

C2
r, (4)

∫ +∞

0
(∂2t u, φ)L2(Ω)+c2(u, φ)V(Ω)+ν(∂tu, φ)V(Ω)ds−

∫ +∞

0
α(u∂2t u+(∂tu)2+f , φ)L2(Ω)ds = 0,

∃!u ∈ X2 := H1(R+;D(−∆)) ∩ H2(R+; L2(Ω)) :

∃r∗ > 0 : ∀r ∈ [0, r∗[ (4)⇒ ‖u‖X2 ≤ 2r.

Application of M.F. Sukhinin’s Theorem Lu+ Φ(u) = F
36 / 43



Roughness, fractals Regularity Boundary Westervelt Conclusion Well-posedness for mixed conditions On the Mosco convergence

Definition for functionals and bilinear forms, U.Mosco, 1994

Definition
A sequence of functionals Gm : H→ (−∞,+∞] is said to M-converge to a
functional G : H→ (−∞,+∞] in a Hilbert space H, if

1. (lim sup condition) For every u ∈ H there exists um converging strongly in H
such that

limGm[um] ≤ G[u], as m→ +∞. (5)

2. (lim inf condition) For every vm converging weakly to u in H

limGm[vm] ≥ G[u], as m→ +∞. (6)
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Approximation of solutions on fractal domains by solutions on prefractal do-
mains (irregular by regular)

• Von Koch 2D mixtures (mixed Poisson problem, R. Capitanelli, A. Vivaldi, 2010,
2011)

• cylindrical von Koch domain 3D (Venttsel problem, M. R. Lancia, P. Vernole,
2010)
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Approximation of solutions on fractal domains by solutions on prefractal do-
mains (irregular by regular)

• Von Koch 2D mixtures (mixed Poisson problem, R. Capitanelli, A. Vivaldi, 2010,
2011)

• cylindrical von Koch domain 3D (Venttsel problem, M. R. Lancia, P. Vernole,
2010)

• Self-similar d-set boundaries in Rn, application to the Westervelt mixed
problem A. Dekkers, ARP, A. Teplyaev, 2022; figs from Wikipedia

38 / 43



Roughness, fractals Regularity Boundary Westervelt Conclusion Well-posedness for mixed conditions On the Mosco convergence

Approximation of solutions on fractal domains by solutions on prefractal do-
mains (irregular by regular)

• Von Koch 2D mixtures (mixed Poisson problem, R. Capitanelli, A. Vivaldi, 2010,
2011)

• cylindrical von Koch domain 3D (Venttsel problem, M. R. Lancia, P. Vernole,
2010)

• Self-similar d-set boundaries in Rn, application to the Westervelt mixed
problem A. Dekkers, ARP, A. Teplyaev, 2022

38 / 43



Roughness, fractals Regularity Boundary Westervelt Conclusion Well-posedness for mixed conditions On the Mosco convergence

Linear problems (mixed Poisson or Helmholtz problems)

• To define a quadratic form (energy or equivalent norm of H1)

bm(um,um) =

∫
Ωm

(|∇um|2 + |um|2)dx +

∫
∂Ωm

am|Tr um|2dµm

on L2(D)2, Ωm ⊂ D

• its Mosco-convergence is ensured if
• Ωm → Ω by Hausdor� and characteristic functions (Ω ⊂ D)

• extension Hσ(Ωm)→ Hσ(D) is uniform on m for 0 ≤ σ ≤ 1

• ∀m ∈ N ‖√am Tr∂Ωm u‖L2(∂Ωm,µm) ≤ Cσ‖u‖Hσ(Rn) for u ∈ Hσ(Rn) 1
2 < σ ≤ 1

• amµm ⇀ aµ:

∀φ ∈ C(D)

∫
∂Ωm

amφdµm →
∫
∂Ω

aφdµ, m→ +∞
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Linear problems (mixed Poisson or Helmholtz problems)

Let (um)m∈N be the sequence of weak solutions on (Ωm)m∈N.
If
• the sequence of solutions is uniformly bounded on m:

‖(ERnum)|D‖H1(D) ≤ C,

• bm(um,w) = 0 is the variational formulation on Ωm,
• bm(um,um)

M→ b(u,u) in L2(D) for Ωm → Ω

then
• u|Ω (the weak limit of ERnum|D) is the weak solution of b(u,w) = 0 on Ω,
• (ERnum)|Ω → (ERnu)|Ω in H1(Ω).

A. Dekkers, ARP, A. Teplyaev, 2022; M. Hinz, ARP, A. Teplyaev, SICON, 2021
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For the Westervelt mixed problem, ν > 0, p = 2

Let Ωm ⊂ D ∀m ∈ N (am = 1/λn−1(Γm)→ 0, µm = λn−1, µ)

Fm[u, φ] : =

∫ T

0

∫
Ωm

[∂2t uφ+∇u∇φ+ ν∇∂tu∇φ] dλndt

+

∫ T

0

∫
Γm

am[Tr∂Ωmu+ νTr∂Ωm∂tu] Tr∂Ωmφ dλn−1dt

+

∫ T

0

∫
Ωm

[−α(u∂2t u)− α(∂tu)2 + f ]φ dλndt

For all u ∈ L2([0, T]; L2(D)), fixed φ ∈ L2([0, T],H1(D))

Fm[u, φ] =

{
Fm[u, φ] if u ∈ H1(]0, T[,H1(D)) ∩ H2(]0, T[; L2(D)),

+∞ otherwise

A. Dekkers, ARP, A. Teplyaev, 2022
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For the Westervelt mixed problem, R2, R3, ν > 0, p = 2

Theorem

1. (u 7→ Fm[u, φ])
M→ (u 7→ F[u, φ]) in L2([0, T]; L2(D))

2. ∀φ ∈ L2([0, T];H1(D)) if vm ⇀ u in H(D) = H1(]0, T[,H1(D)) ∩ H2(]0, T[; L2(D)),

then Fm[vm, φ] −→
m→+∞

F[u, φ]

3. ∂ΓDir,Ωm = ∂ΓDir,Ω = ∂ΓDir,D

(ERnu0,m)|Ω ⇀
m→+∞

u0, (ERnu1,m)|Ω ⇀
m→+∞

u1 in H1(Ω),

then (ERnum)|D ⇀ u∗ in H(D) with u∗|Ω = u ((ERnum)|Ω → u in H1(Ω))
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Conclusion

Solving PDEs on domains with Non-Lipschitz boundaries.

Approximation of d-sets.

Rough boundaries are the energy minimizers.

Thank you very much for your attention!
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