

Wave propagation and absorption models with a Robin boundary condition in domains with a non-Lipschitz boundary

Anna Rozanova-Pierrat

with A. Dekkers (CS), M. Hinz (Bielefeld), A. Teplyaev (Connecticut)

19 May 2022

Laboratoire MICS, Fédération de Mathèmatiques, CentraleSupélec, Université Paris-Saclay, France

Roughness, fractals

Models with boundary absorbtion

When fractals could appear

Influence of irregular shapes on the regularity of solutions

Boundary Irregularity

Example of the Westervelt equation

Well-posedness for mixed conditions

On the Mosco convergence

Conclusion

- M. R. Lancia, <u>A. Rozanova-Pierrat,(Eds.)</u> "Fractals in engineering: Theoretical aspects and Numerical approximations", ICIAM 2019 SEMA SIMAI SPRINGER SERIES PUBLICATIONS, 2021.
- M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Boundary value problems on non-Lipschitz uniform domains: Stability, compactness and the existence of optimal shapes. submitted (preprint).
- A. Dekkers, <u>A. Rozanova-Pierrat</u>, Dirichlet boundary valued problems for linear and nonlinear wave equations on arbitrary and fractal domains, J. Math. Anal. Appl. 512 (2022) 126089.
- A. Dekkers, <u>A. Rozanova-Pierrat</u>, A. Teplyaev, Mixed boundary valued problem for linear and nonlinear wave equations in domains with fractal boundaries. Calculus of Variations and Partial Differential Equations (2022) 61:75.
- F. Magoulès, P.T.K. Ngyuen, P. Omnes, <u>A. Rozanova-Pierrat</u>, Optimal absorbtion of acoustic waves by a boundary. SIAM J. Control Optim. Vol. 59, No. 1, (2021), pp. 561-583.
- M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Non-Lipschitz uniform domain shape optimization in linear acoustics. SIAM J. Control Optim. Vol. 59, No. 2 (2021), pp. 1007–1032.
- M. Hinz, F. Magoulès, <u>A. Rozanova-Pierrat</u>, M. Rynkovskaya, A. Teplyaev, On the existence of optimal shapes in architecture. Applied Mathematical Modelling, Vol. 94, (2021), pp. 676–687.
- · K. Arfi, A. Rozanova-Pierrat, Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous

Dynamical Systems - S, Vol. 12, No. 1, (2019), pp. 1-26.

Roughness, fractals

Models with boundary absorbtion

When fractals could appear

Influence of irregular shapes on the regularity of solutions

Boundary Irregularity

Example of the Westervelt equation

Well-posedness for mixed conditions

On the Mosco convergence

Conclusion

Traffic noise absorbing wall

"Fractal wall" TM, porous material is the cement-wood (acoustic absorbent), Patent Ecole Polytechnique-Colas, Canadian and US patent

Absorption of the "Fractal wall"

Acoustic anechoic chambers

Test anechoic chamber

Microsoft anechoic chamber -20db noise level, the quietest place on earth

Test semi-anechoic chamber

Helmholtz problem for a fixed frequency and a noise source

F. Magoulès, T.P.K. Nguyen, P. Omnes, ARP. SICON, 2021; M. Hinz, ARP, A. Teplyaev, SICON, 2021.

Damping by the boundary: evolutive in time model ($\operatorname{Re}(\alpha) > 0$ et $\operatorname{Im}(\alpha) < 0$)

$$\begin{cases} \partial_t^2 u - \Delta u = e^{-i\omega t} f(x), \\ u|_{\Gamma_{Dir}} = 0, \quad \frac{\partial u}{\partial n}\Big|_{\Gamma_{Neu}} = 0, \\ \frac{\partial u}{\partial n} - \frac{1}{\omega} \operatorname{Im}(\alpha(x)) \operatorname{Tr} \partial_t u + \operatorname{Re}(\alpha(x)) \operatorname{Tr} u|_{\Gamma} = 0, \\ u|_{t=0} = u_0, \quad \partial_t u|_{t=0} = u_1 \end{cases}$$

$$\begin{split} X(\Omega) &= \left\{ u \in H^1(\Omega) | \ \operatorname{Tr} u|_{\Gamma_{Dir}} = 0 \right\} \times L^2(\Omega) \\ \| (u,v) \|_{X(\Omega)}^2 &= \int_{\Omega} \left(|\nabla_X u|^2 + |v|^2 \right) \mathrm{d}x + \int_{\Gamma} \operatorname{Re}(\alpha(x)) | \operatorname{Tr} u|^2 d\mu. \\ \partial_t \left(\| (u,\partial_t u) \|_{X(\Omega)}^2 \right) &= \frac{2}{\omega} \int_{\Gamma} \operatorname{Im}(\alpha(x)) | \operatorname{Tr} \partial_t u|^2 d\mu. \end{split}$$

C. Bardos, J. Rauch, Asymptotic Analysis, 1994

Models with boundary absorbtion When fractals could appear

Nature complexity and their models

Porous materials

 $1 \mu m$

11 / 43

Antigiogenesis of cancerous tumours

Roughness, fractals

Models with boundary absorbtion

When fractals could appear

Influence of irregular shapes on the regularity of solutions

Boundary Irregularity

Example of the Westervelt equation

Well-posedness for mixed conditions

On the Mosco convergence

Conclusion

Roughness, fractals Regularity Boundary Westervelt Conclusion

Dirichlet Poisson problem for $f \in \mathcal{D}(\Omega)$

For an **arbitrary** bounded $\Omega \subset \mathbb{R}^n$

$$\begin{cases} -\Delta u = f \text{ in } \Omega, & (f \in L^2(\Omega)) \\ u = 0 \text{ on } \partial\Omega, \end{cases}$$
(1)

Let $H^1_0(\Omega) = \overline{\mathcal{D}(\Omega)}^{\|\cdot\|_{H^1(\Omega)}}$.

 $\exists \, ! u \in H^1_0(\Omega) : \quad \forall \phi \in H^1_0(\Omega) \quad (\nabla u, \nabla \phi)_{L^2(\Omega)} = (f, \phi)_{L^2(\Omega)}$

Regularity of the weak solution related with the regularity of the boundary for $f\in \mathcal{D}(\Omega)$

Regular boundary \iff regularity of the weak solution

1. $\partial \Omega \in \mathbf{C}^{\infty}$: existence of classical derivatives, classical solution

Regularity of the weak solution related with the regularity of the boundary for $f\in\mathcal{D}(\Omega)$

Regular boundary \iff regularity of the weak solution

- 1. $\partial \Omega \in \mathbf{C}^{\infty}$: existence of classical derivatives, classical solution
- 2. $\partial \Omega \in C^2$: interior and global regularity, *i.e.* $u \in C^{\infty}(\Omega) \cap C^1(\overline{\Omega}) \cap H^2(\Omega)$ L.C. Evans, 2010

Regularity of the weak solution related with the regularity of the boundary for $f\in\mathcal{D}(\Omega)$

Regular boundary \iff regularity of the weak solution

- 1. $\partial\Omega\in \textbf{C}^\infty$: existence of classical derivatives, classical solution
- 2. $\partial \Omega \in C^2$: interior and global regularity, *i.e.* $u \in C^{\infty}(\Omega) \cap C^1(\overline{\Omega}) \cap H^2(\Omega)$ L.C. Evans, 2010
- 3. Lipschitz boundaries: $\exists \nu$ a.e. on $\partial \Omega$, $u \in C^{\infty}(\Omega) \cap C(\overline{\Omega})$, but not necessarily in $H^{2}(\Omega)$ (yes, if Ω is convex P. Grisvard 1974)

Regularity of the weak solution related with the regularity of the boundary for $f \in \mathcal{D}(\Omega)$

Regular boundary \iff regularity of the weak solution

- 1. $\partial \Omega \in \mathbf{C}^{\infty}$: existence of classical derivatives, classical solution
- 2. $\partial \Omega \in C^2$: interior and global regularity, *i.e.* $u \in C^{\infty}(\Omega) \cap C^1(\overline{\Omega}) \cap H^2(\Omega)$ L.C. Evans, 2010
- 3. Lipschitz boundaries: $\exists \nu$ a.e. on $\partial \Omega$, $u \in C^{\infty}(\Omega) \cap C(\overline{\Omega})$, but not necessarily in $H^{2}(\Omega)$ (yes, if Ω is convex P. Grisvard 1974)
- 4. self-similar fractal boundaries of a NTA-domain:

 $\nexists \nu \ \forall \mathbf{x} \in \partial \Omega$ and $\exists \frac{\partial u}{\partial \nu}$ only in the weak sense;

 $u \in H^1_0(\Omega) \cap C^\infty(\Omega) \cap C(\overline{\Omega}), \quad \text{but} \quad u \notin H^2(\Omega)$

Nyström, 1996, von Koch's snowflake

Regularity of the weak solution related with the regularity of the boundary for $f \in \mathcal{D}(\Omega)$

Regular boundary \iff regularity of the weak solution

- 1. $\partial \Omega \in \textbf{C}^\infty$: existence of classical derivatives, classical solution
- 2. $\partial \Omega \in C^2$: interior and global regularity, *i.e.* $u \in C^{\infty}(\Omega) \cap C^1(\overline{\Omega}) \cap H^2(\Omega)$ L.C. Evans, 2010
- 3. Lipschitz boundaries: $\exists \nu$ a.e. on $\partial \Omega$, $u \in C^{\infty}(\Omega) \cap C(\overline{\Omega})$, but not necessarily in $H^{2}(\Omega)$ (yes, if Ω is convex P. Grisvard 1974)
- 4. self-similar fractal boundaries of a NTA-domain:

 $\nexists \nu \ \forall \mathbf{x} \in \partial \Omega$ and $\exists \frac{\partial u}{\partial \nu}$ only in the weak sense;

 $u \in H^1_0(\Omega) \cap C^\infty(\Omega) \cap C(\overline{\Omega}), \quad \text{but} \quad u \notin H^2(\Omega)$

Nyström, 1996, von Koch's snowflake

5. general case

 $u \in H^1_0(\Omega) \cap C^\infty(\Omega)$

Examples of self-similar fractal boundaries

 $\Omega \subset \mathbb{R}^n$ be bounded domain with a compact non-Lipschitz boundary $\partial \Omega = \Gamma_D \cup \Gamma_N \cup \Gamma_R$ or $\partial \Omega = \Gamma_R$

$$\begin{cases} -\Delta u = f \text{ in } \Omega, & (f \in L^{2}(\Omega)) \\ u = 0 \text{ on } \Gamma_{D}, \\ \frac{\partial u}{\partial n} = 0 \text{ on } \Gamma_{N}, \\ \frac{\partial u}{\partial n} + a \text{Tr} u = 0 \text{ on } \Gamma_{R}, \quad (a > 0) \end{cases}$$

 $\Omega \subset \mathbb{R}^n$ be bounded domain with a compact non-Lipschitz boundary $\partial \Omega = \Gamma_D \cup \Gamma_N \cup \Gamma_R$ or $\partial \Omega = \Gamma_R$

$$\begin{pmatrix} -\Delta u = f \text{ in } \Omega, & (f \in L^2(\Omega)) \\ u = 0 \text{ on } \Gamma_D, \\ \frac{\partial u}{\partial n} = 0 \text{ on } \Gamma_N, \\ \frac{\partial u}{\partial n} + a \text{Tr} u = 0 \text{ on } \Gamma_R, \quad (a > 0) \end{cases}$$

$$V(\Omega) := \{ u \in H^1(\Omega) | \ Tr_{\Gamma_D} u = 0 \}.$$

endowed with the following norm

$$\begin{split} \|u\|_{V(\Omega)}^{2} &= \int_{\Omega} |\nabla u|^{2} dx + a \int_{\Gamma_{R}} |Tr_{\partial\Omega} u|^{2} d\mu, \\ \forall f \in L^{2}(\Omega) \ \exists ! u \in V(\Omega) : \quad \forall v \in V(\Omega) \quad (u, v)_{V(\Omega)} = (f, v)_{L^{2}(\Omega)}. \end{split}$$

D. Daners, Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc. 352(9), 4207-4236 (2000).

 $\mu = \mathcal{H}^{n-1}$, if $\mathcal{H}^{n-1}(\Gamma_R) = +\infty$, then $\operatorname{Tr} u|_{\Gamma_R} = \mathbf{0}$ (Dirichlet boundary condition).

D. Daners, Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc. 352(9), 4207–4236 (2000).

 $\mu = \mathcal{H}^{n-1}$, if $\mathcal{H}^{n-1}(\Gamma_R) = +\infty$, then $\operatorname{Tr} u|_{\Gamma_R} = \mathbf{0}$ (Dirichlet boundary condition).

R. Capitanelli, Robin boundary condition on scale irregular fractals. Commun. Pure Appl. Anal. 9(5), 1221–1234 (2010).
 Von Koch type fractal boundaries in R², *d*-measure.

D. Daners, Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc. 352(9), 4207–4236 (2000).

 $\mu = \mathcal{H}^{n-1}$, if $\mathcal{H}^{n-1}(\Gamma_R) = +\infty$, then $\operatorname{Tr} u|_{\Gamma_R} = \mathbf{0}$ (Dirichlet boundary condition).

- **R. Capitanelli**, Robin boundary condition on scale irregular fractals. Commun. Pure Appl. Anal. 9(5), 1221–1234 (**2010**). Von Koch type fractal boundaries in \mathbb{R}^2 , *d*-measure.
- A. Dekkers, ARP, A. Teplyaev, Calc. Var. (2022);

M. Hinz, ARP, A. Teplyaev, submitted, preprint

 R^n , μ is an upper *d*-regular Borel measure, n - 2 < d < n.

Roughness, fractals

Models with boundary absorbtion

When fractals could appear

Influence of irregular shapes on the regularity of solutions

Boundary Irregularity

Example of the Westervelt equation

Well-posedness for mixed conditions

On the Mosco convergence

Conclusion

The "worst" boundary

"Sobolev admissible domains":

We consider **the Sobolev extension domains** Ω with compact boundaries $\partial \Omega$ defined by the support of a positive Borel measure μ on \mathbb{R}^n

 $\partial \Omega = \operatorname{supp} \mu,$

which in addition is **upper** *d***-regular** for a fixed $d \in [n - 2, n[$: there is a constant $c_d > 0$ such that

$$\mu(\mathsf{B}_r(\mathsf{x})) \le \mathsf{c}_d r^d, \quad \mathsf{x} \in \partial\Omega, \quad \mathsf{O} < \mathsf{r} \le \mathsf{1}. \tag{2}$$

 $(\Longrightarrow \dim_H \partial \Omega \ge d)$

Examples, remarks

 $\cdot \frac{d\text{-sets:}}{\exists c_1, c_2 > 0,} \exists m_H \partial \Omega = d > 0$

$$c_1 r^d \le \mu(\partial \Omega \cap \overline{B_r(x)}) \le c_2 r^d$$
, for $\forall x \in \partial \Omega$, $0 < r \le 1$,

- Lipschitz and more regular boundaries
- bounded dimension boundaries

 $n - 2 < \dim_H \partial \Omega < n$

Definition of *W*^{*k,p*}-extension domains

Definition

A domain $\Omega \subset \mathbb{R}^n$ is called a $W^{k,p}$ -extension domain (for $k \in \mathbb{N}^*$, $1 \le p \le \infty$) if there exists a bounded linear extension operator $E : W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^n)$:

$$\forall u \in W^{k,p}(\Omega) \quad \exists v = Eu \in W^{k,p}(\mathbb{R}^n) \text{ with } v|_{\Omega} = u \text{ and } C(k,p,\Omega) > 0:$$

 $\|\mathbf{v}\|_{W^{k,p}(\mathbb{R}^n)} \leq C \|\mathbf{u}\|_{W^{k,p}(\Omega)}.$

Equivalently, there exists a linear continuous trace/restriction operator

$$\mathsf{Tr}: W^{k,p}(\mathbb{R}^n) \to W^{k,p}(\Omega).$$

Geometrical properties of Ω ensuring that Ω is a $W^{k,p}$ -extension domain ????

Known *W^{k,p}*-extension domains

Theorem If a domain $\Omega \in \mathbf{D} \Longrightarrow \Omega$ is a $W^{k,p}$ -extension domain.

1. Calderon [1961], Stein [1970] :

 $D = \{Lipschitz domains\} =: D_{Lip}$

2. Jones [1981] : ($D_{loc unif} \supseteq D_{Lip}$)

 $D = \{ \text{locally uniform or } (\varepsilon, \delta) \text{-domains} \} =: D_{\text{loc unif}}$

Theorem (n = 2**, Jones [1981])** Let $D_{\mathbb{R}^2} = D_{loc unif} \cap \{$ finitely connected domains in $\mathbb{R}^2 \}$. Then

 $\Omega \in D_{\mathbb{R}^2} \iff \Omega$ is a $W^{k,p}$ -extension domain.

Herron, Koskela [1991]: a bounded $\Omega \in D_{loc unif}$ is an uniform domain.

Locally uniform or (ε, δ) -domains ($\varepsilon > 0, 0 < \delta \le \infty$)

Definition

An open connected subset Ω of \mathbb{R}^n is an (ε, δ) -domain,

if whenever
$$\mathbf{x}, \mathbf{y} \in \Omega$$
 and $|\mathbf{x} - \mathbf{y}| < \delta$, (thus locally)

there is a rectifiable arc $\gamma \subset \Omega$ with length $\ell(\gamma)$ joining **x** to **y** and satisfying

1.
$$\ell(\gamma) \leq \frac{|\mathbf{x}-\mathbf{y}|}{\varepsilon}$$
 (uniformly locally quasiconvex) and
2. $d(\mathbf{z}, \partial \Omega) \geq \varepsilon |\mathbf{x} - \mathbf{z}| \frac{|\mathbf{y}-\mathbf{z}|}{|\mathbf{x}-\mathbf{y}|}$ for $\mathbf{z} \in \gamma$.

Theorem (n = 2, Jones [1981])

A bounded and finitely connected domain $\Omega \in D_{loc unif} \iff$ its boundary consists of a finite number of points and quasicircles.

Roughness, fractals Regularity Boundary Westervelt Conclusion

 $d extsf{-Sets}$ and $(arepsilon,\delta) extsf{-domains}$ A. Jonsson, H. Wallin,1984

• Ω is an *n*-set or satisfies "the measure density condition"

 $\exists c > o \ \forall x \in \Omega, \ \forall r \in]o, 1] \ \lambda^n(B_r(x) \cap \Omega) \geq C \lambda^n(B_r(x)) = cr^n.$

- An *n*-set Ω cannot be "thin" close to its boundary $\partial \Omega$.
- *n*-sets $\supseteq D_{loc unif} \supseteq D_{Lip}$.

Roughness, fractals Regularity Boundary Westervelt Conclusion

Optimal class of *W*^{*k*,*p*}-extension domains

Theorem (Hajłasz, Koskela, and Tuominen [2008]) A domain $\Omega \subset \mathbb{R}^n$ is a $W^{k,p}$ -extension domain

- 1. for $1 \le p < \infty$, $k \ge 1$, $k \in \mathbb{N} \Longrightarrow \Omega$ is an n-set.
- 2. for $p = \infty$ and $k = 1 \iff \Omega$ is uniformly locally quasiconvex.

Optimal class of *W*^{*k*,*p*}**-extension domains**

Theorem (Hajłasz, Koskela, and Tuominen [2008]) A domain $\Omega \subset \mathbb{R}^n$ is a $W^{k,p}$ -extension domain

- 1. for $\mathbf{1} \leq \mathbf{p} < \infty$, $\mathbf{k} \geq \mathbf{1}$, $\mathbf{k} \in \mathbb{N} \Longrightarrow \Omega$ is an \mathbf{n} -set.
- 2. for $p = \infty$ and $k = 1 \iff \Omega$ is uniformly locally quasiconvex.
- for 1 k,p</sup>(Ω) = C^{k,p}(Ω) with norms' equivalence.

By $C^{k,p}(\Omega)$ is denoted the **space of the fractional sharp maximal functions**: $C^{k,p}(\Omega) = \{f \in L^p(\Omega) | f_{k,\Omega}^{\sharp} \in L^p(\Omega)\}, \text{ where }$

$$f_{k,\Omega}^{\sharp}(x) = \sup_{r>0} r^{-k} \inf_{P \in \mathcal{P}^{k-1}} \frac{1}{\lambda^n(B_r(x))} \int_{B_r(x) \cap \Omega} |f - P| dy,$$

with the norm $\|f\|_{\mathcal{C}^{k,p}(\Omega)} = \|f\|_{L^p(\Omega)} + \|f_{k,\Omega}^{\sharp}\|_{L^p(\Omega)}.$

Trace operator A. Jonnson, 2009

Definition

For a Sobolev extension domain Ω of \mathbb{R}^n with supp $\mu = \partial \Omega$ (for an upper regular Borel measure μ),

the trace operator $\operatorname{Tr} : \operatorname{H}^1(\Omega) \to L^2(\partial\Omega, \mu)$ is defined μ -a.e. by

$$x \in \partial \Omega$$
 Tr $u(x) = \lim_{r \to 0} \frac{1}{\lambda^n (\Omega \cap B_r(x))} \int_{\Omega \cap B_r(x)} u(y) dy.$

$$B(\partial\Omega,\mu):=\mathrm{Tr}(H^1(\Omega)).$$

Properties of μ , supp $\mu = \partial \Omega$ are important to caracterize $B(\partial \Omega, \mu)$:

$$H^{\frac{1}{2}}(\partial\Omega), \quad B^{2,2}_{1-\frac{n-d}{2}}(\partial\Omega), \quad B^{2,2}_{1}(\partial\Omega), \ldots$$

d-sets, H. Wallin 1991 Jonnson 1997

Trace theorem on boundaries given by upper d-regular measures μ

- 1. Let Ω be a bounded $W^{1,2}(\Omega)$ -extension domain in \mathbb{R}^n
- Let ∂Ω = supp µ be compact, O < n − 2 < d ≤ n for a Borel positive measure µ s.t.

$$c_d > 0$$
 $\mu(B(x,r)) \le c_d r^d$, $x \in \partial \Omega$, $0 < r \le 1$. (3)

Then

(i) $\operatorname{Tr} : H^{1}(\Omega) \to L^{2}(\partial\Omega,\mu)$ is compact operator and $\exists c_{\operatorname{Tr}}(n,\Omega,d,c_{d}) > 0$, s. t. $\|\operatorname{Tr} f\|_{L^{2}(\partial\Omega,\mu)} \leq c_{\operatorname{Tr}} \|f\|_{H^{1}(\Omega)}, \quad f \in H^{1}(\Omega).$

Trace theorem on boundaries given by upper d-regular measures μ

- 1. Let Ω be a bounded $W^{1,2}(\Omega)$ -extension domain in \mathbb{R}^n
- Let ∂Ω = supp µ be compact, O < n − 2 < d ≤ n for a Borel positive measure µ s.t.

$$c_d > 0$$
 $\mu(B(x,r)) \le c_d r^d$, $x \in \partial \Omega$, $0 < r \le 1$. (3)

Then

(i) $\operatorname{Tr} : H^{1}(\Omega) \to L^{2}(\partial\Omega,\mu)$ is compact operator and $\exists c_{\operatorname{Tr}}(n,\Omega,d,c_{d}) > 0$, s. t. $\|\operatorname{Tr} f\|_{L^{2}(\partial\Omega,\mu)} \leq c_{\operatorname{Tr}} \|f\|_{H^{1}(\Omega)}, \quad f \in H^{1}(\Omega).$ (ii) $B(\partial\Omega,\mu) := \operatorname{Tr}(H^{1}(\Omega))$ is a Hilbert space (compact and dense in $L^{2}(\partial\Omega,\mu)$)

$$\|\varphi\|_{B(\partial\Omega,\mu)} := \inf\{\|g\|_{H^1(\Omega)} \mid \varphi = \operatorname{Tr} g\}.$$

Trace theorem on boundaries given by upper d-regular measures μ

- 1. Let Ω be a bounded $W^{1,2}(\Omega)$ -extension domain in \mathbb{R}^n
- Let ∂Ω = supp µ be compact, O < n − 2 < d ≤ n for a Borel positive measure µ s.t.

$$c_d > 0$$
 $\mu(B(x,r)) \le c_d r^d$, $x \in \partial \Omega$, $0 < r \le 1$. (3)

Then

(i) $\operatorname{Tr} : H^{1}(\Omega) \to L^{2}(\partial\Omega,\mu)$ is compact operator and $\exists c_{\operatorname{Tr}}(n,\Omega,d,c_{d}) > 0$, s. t. $\|\operatorname{Tr} f\|_{L^{2}(\partial\Omega,\mu)} \leq c_{\operatorname{Tr}} \|f\|_{H^{1}(\Omega)}, \quad f \in H^{1}(\Omega).$ (ii) $B(\partial\Omega,\mu) := \operatorname{Tr}(H^{1}(\Omega))$ is a Hilbert space (compact and dense in $L^{2}(\partial\Omega,\mu)$)

$$\|\varphi\|_{\mathcal{B}(\partial\Omega,\mu)} := \inf\{\|\boldsymbol{g}\|_{H^1(\Omega)} \mid \varphi = \mathrm{Tr} \ \boldsymbol{g}\}.$$

(iii) \exists a linear operator $H_{\partial\Omega} : B(\partial\Omega, \mu) \to H^1(\Omega)$ of norm one s. t. $\forall \varphi \in B(\partial\Omega, \mu)$ $Tr(H_{\partial\Omega}\varphi) = \varphi.$

M. Hinz, ARP, A. Teplyaev, SIAM SICON, 2021, M. Hinz, F. Magoulès, ARP, M. Rynkovskaya, A. Teplyaev, Applied Mathematical Modelling 2021.

Some important corrolaries

Norm equivalence:

If $\operatorname{Tr} : H^1(\Omega) \to L^2(\partial\Omega, \mu)$ is compact, then the norm $\|u\|_{H^1(\Omega)}$ on $H^1(\Omega)$ is equivalent to

$$\|\boldsymbol{u}\|_{\mathrm{Tr}} = \left(\int_{\Omega} |\nabla \boldsymbol{u}|^2 \mathrm{d}\boldsymbol{x} + \int_{\partial\Omega} |\mathrm{Tr}\boldsymbol{u}|^2 \boldsymbol{d}\mu\right)^{\frac{1}{2}}$$

Compact embedding:

If Ω is bounded and a Sobolev extension domain, then the embedding

 $H^1(\Omega) \subset L^2(\Omega)$ is compact.

Green formula

Thanks to multiple works of M. R. Lancia (d-sets, Jonsson measures), we obtain

Proposition

Let $\Omega \subset \mathbb{R}^n$ be a Sobolev extension domain with a compact boundary $\partial \Omega = \operatorname{supp} \mu$ an upper-regular positive Borel measure with n - 2 < d < n.

Then for all $u, v \in H^1(\Omega)$ with $\Delta u \in L^2(\Omega)$

$$\langle \frac{\partial u}{\partial \nu}, \operatorname{Tr} v \rangle_{B'(\partial\Omega,\mu),B(\partial\Omega,\mu)} := \int_{\Omega} v \Delta u dx + \int_{\Omega} \nabla v \cdot \nabla u dx.$$

Remark $\Delta u \in L^2(\Omega)$: $\exists f \in L^2(\Omega)$ s.t. $-\Delta u = f$ with for example $\frac{\partial u}{\partial \nu}|_{\partial \Omega} = 0$.

 \implies **u** is the weak solution of the Neumann Poisson problem.

Mixed boundary Poisson problem

For $\Omega \subset \mathbb{R}^n$ a Sobolev extension domain with a compact boundary $\partial \Omega = \Gamma_D \cup \Gamma_N \cup \Gamma_R = \operatorname{supp} \mu$ with an upper regular Borel mesure μ and compact Γ_D , Γ_R , s. t. $\mu(\Gamma_D \cap \Gamma_N) = \mu(\Gamma_D \cap \Gamma_R) = \mu(\Gamma_N \cap \Gamma_R) = 0$.

$$\begin{cases} -\Delta u = f \text{ in } \Omega, & (f \in L^{2}(\Omega)) \\ u = 0 \text{ on } \Gamma_{D}, \\ \frac{\partial u}{\partial n} = 0 \text{ on } \Gamma_{N}, \\ \frac{\partial u}{\partial n} + a \text{Tr} u = 0 \text{ on } \Gamma_{R}, & (a > 0) \\ V(\Omega) := \{ u \in H^{1}(\Omega) | \text{ } \text{Tr}_{\Gamma_{D}} u = 0 \}. \end{cases}$$

endowed with the following norm

$$\begin{split} \|u\|_{V(\Omega)}^2 &= \int_{\Omega} |\nabla u|^2 \ dx + a \int_{\Gamma_R} |Tr_{\partial\Omega} u|^2 \mathrm{d}\mu, \\ \forall f \in L^2(\Omega) \ \exists ! u \in V(\Omega) : \quad \forall v \in V(\Omega) \quad (u, v)_{V(\Omega)} = (f, v)_{L^2(\Omega)}. \end{split}$$

A. Dekkers, ARP, A. Teplyaev, Calculus of Variations and Partial Differential Equations, 2022

Weak well-posedness of the Helmholtz problem

Let μ be a positive Borel measure: supp $\mu = \partial \Omega$ is a compact in \mathbb{R}^n .

$$V(\Omega) = \{ u \in H^{1}(\Omega) | \operatorname{Tr} u = \mathbf{0} \text{ on } \Gamma_{Dir} \}$$
$$\| u \|_{V(\Omega,\mu)}^{2} = \int_{\Omega} |\nabla u|^{2} dx + \int_{\Gamma} \operatorname{Re}(\alpha) |\operatorname{Tr} u|^{2} d\mu \text{ equivalent to } \| u \|_{H^{1}(\Omega)}^{2}$$
$$\forall f \in L^{2}(\Omega), \text{ and } \omega > \mathbf{0} \text{ there exists a unique solution } u \in V(\Omega),$$

$$\begin{aligned} \forall \mathbf{v} \in \mathbf{V}(\Omega) \quad & \int_{\Omega} \nabla u \cdot \nabla \bar{\mathbf{v}} d\mathbf{x} - \omega^2 \int_{\Omega} u \bar{\mathbf{v}} d\mathbf{x} + \int_{\Gamma} \alpha \operatorname{Tr} u \operatorname{Tr} \bar{\mathbf{v}} d\mu = -\int_{\Omega} f \bar{\mathbf{v}} d\mathbf{x} \\ \exists C(\alpha, \omega, C_{\text{Poincaré}}(\Omega)) > \mathbf{0} : \quad & \|u\|_{H^1(\Omega)} \leq C \|f\|_{L^2(\Omega)} \end{aligned}$$

Methods for evolutive in time problems

- $\cdot\,$ Galerkin method based on the spectral problem of $-\Delta$
- To work in the Hilbert space of the weak solutions of the Poisson problem:

$$\begin{split} \mathcal{D}(-\Delta) &= \{ u \in H^1(\Omega) | \quad -\Delta u \in L^2(\Omega) : \\ & \exists f \in L^2(\Omega) \quad \forall v \in V(\Omega) \quad (u,v)_{V(\Omega)} = (f,v)_{L^2(\Omega)} \} \end{split}$$

- Fix point type theorems of functional analysis
- Approximation by the solutions on regular boundaries

(with converging (extension) sequence of initial conditions; $\rightharpoonup H^1(\mathbb{R}^n)$)

- + $\Omega_m \rightarrow \Omega$ in the sense of Hausdorff and caracteristic functions in D;
- Mosco convergence; $VF_m(v_m, \phi) \rightarrow VF(u, \phi) \ \forall \phi \in H(D)$
- uniform on m linear bounded extension $E: H^1(\Omega_m) \to H^1(D)$
- · $(\mathit{Ev}_m)_{m\in\mathbb{N}}$ is uniformly bounded on m
- $\cdot \ \forall t \geq o \quad Ev_{m_k}|_{\Omega} \rightarrow u \text{ in } H^1(\Omega)$

Roughness, fractals

Models with boundary absorbtion

When fractals could appear

Influence of irregular shapes on the regularity of solutions

Boundary Irregularity

Example of the Westervelt equation

Well-posedness for mixed conditions

On the Mosco convergence

Conclusion

$$\begin{split} & \left(\partial_t^2 u - c^2 \Delta u - \nu \Delta \partial_t u = \alpha u \partial_t^2 u + \alpha (\partial_t u)^2 + f \quad on \quad]0, T] \times \Omega, \\ & u = 0 \quad \text{on } \Gamma_D \times [0, T], \\ & \frac{\partial u}{\partial n} = 0 \quad \text{on } \Gamma_N \times [0, T], \\ & \frac{\partial u}{\partial n} + au = 0 \quad \text{on } \Gamma_R \times [0, T], \\ & u(0) = u_0, \quad \partial_t u(0) = u_1. \end{split}$$

$$\begin{cases} \partial_t^2 u - c^2 \Delta u - \nu \Delta \partial_t u = \alpha u \partial_t^2 u + \alpha (\partial_t u)^2 + f \quad on \quad]0, T] \times \Omega, \\ u = 0 \quad \text{on } \Gamma_D \times [0, T], \\ \frac{\partial u}{\partial n} = 0 \quad \text{on } \Gamma_N \times [0, T], \\ \frac{\partial u}{\partial n} + au = 0 \quad \text{on } \Gamma_R \times [0, T], \\ u(0) = u_0, \quad \partial_t u(0) = u_1. \end{cases}$$

Bounded domain with **C**² boundary:

- B. Kaltenbacher, I. Lasiecka, 2009, 2012 (∂Ω = Γ_D non homogeneous) 2011 (Robin or Neumann non homogeneous) n ≤ 3;
- S. Meyer, M. Wilke, 2013 (Dirichlet non homogeneous case, all *n*, *W*^{*k*,*p*}).

$$\begin{cases} \partial_t^2 u - c^2 \Delta u - \nu \Delta \partial_t u = \alpha u \partial_t^2 u + \alpha (\partial_t u)^2 + f \quad on \quad]0, T] \times \Omega, \\ u = 0 \quad \text{on } \Gamma_D \times [0, T], \\ \frac{\partial u}{\partial n} = 0 \quad \text{on } \Gamma_N \times [0, T], \\ \frac{\partial u}{\partial n} + au = 0 \quad \text{on } \Gamma_R \times [0, T], \\ u(0) = u_0, \quad \partial_t u(0) = u_1. \end{cases}$$

Bounded domain with **C**² boundary:

- B. Kaltenbacher, I. Lasiecka, 2009, 2012 (∂Ω = Γ_D non homogeneous) 2011 (Robin or Neumann non homogeneous) n ≤ 3;
- S. Meyer, M. Wilke, 2013 (Dirichlet non homogeneous case, all *n*, *W*^{*k*,*p*}).

In the Non-Lipschitz case, no access to

- the H²-regularity (thus high energy a priori estimates)
- Nyström: $w \in H^1_0(\Omega), \ -\Delta w = f \in L^2(\Omega) \quad \|\nabla w\|_{L^6(\Omega)} \nleq C \|\Delta w\|_{L^2(\Omega)}$

$$\begin{split} & \left(\partial_t^2 u - c^2 \Delta u - \nu \Delta \partial_t u = \alpha u \partial_t^2 u + \alpha (\partial_t u)^2 + f \quad on \quad [0, T] \times \Omega, \\ & u = 0 \quad \text{on } \Gamma_D \times [0, T], \\ & \frac{\partial u}{\partial n} = 0 \quad \text{on } \Gamma_N \times [0, T], \\ & \frac{\partial u}{\partial n} + au = 0 \quad \text{on } \Gamma_R \times [0, T], \\ & u(0) = u_0, \quad \partial_t u(0) = u_1. \end{split}$$

Domain Ω	Linear equation	Nonlinear equation
$\partial \Omega = \Gamma_D$ in \mathbb{R}^2	arbitrary	NTA or limit of NTA domains
$\partial \Omega = \Gamma_D \text{ in } \mathbb{R}^3$	arbitrary	arbitrary
$\Gamma_R \neq \varnothing$ in \mathbb{R}^2 or \mathbb{R}^3	Sobolev admissible	Sobolev admissible

Estimate of $||u||_{L^{\infty}(\Omega)}$

Theorem

Let Ω be a bounded domain and $f \in L^p(\Omega)$ $p \ge 2$, then for u weak solution of the Poisson problem

$$\|u\|_{L^{\infty}(\Omega)} \leq C \|f\|_{L^{p}(\Omega)} = C \|\Delta u\|_{L^{p}(\Omega)}.$$

1. If $\partial \Omega = \Gamma_{Dir}$

- : $\Omega \subset \mathbb{R}^2$ NTA domains (Nyström (1994)),
- $\Omega \subset \mathbb{R}^3$ arbitrary domain (Xie (1991)).
- 2. If $\partial \Omega = \Gamma_{Rob}$ and $\Omega \subset \mathbb{R}^n$
 - Daners (2000): p > n for n 1-dimensional boundaries, $C = \tilde{C} \max(1, \frac{1}{a})$
 - + A. Dekkers, ARP: $p\geq 2$ for Sobolev admissible domains;
- 3. If $\partial \Omega = \Gamma_{Rob} \cup \Gamma_{Dir} \cup \Gamma_{Neu}$, $\Omega \subset \mathbb{R}^n$
 - A. Dekkers, ARP, A. Teplyaev, 2022: $p\geq$ 2, if Ω is $(arepsilon,\infty)$ -domain, then $\mathsf{C}=\mathsf{C}(arepsilon,\mathsf{n},\mathsf{C}_\mathsf{P})$, but not on

Mixed problem for the Westervelt equation, $\nu > 0$, p = 2

Theorem

Let Ω be bounded Sobolev admissible domain of \mathbb{R}^2 or \mathbb{R}^3 . For all $\phi \in L^2(\mathbb{R}^+; V(\Omega))$ with $u(0) = u_0 \in \mathcal{D}(-\Delta)$ and $\partial_t u(0) = u_1 \in V(\Omega)$, $f \in L^2(\mathbb{R}^+; L^2(\Omega))$,

$$\|f\|_{L^{2}(\mathbb{R}^{+};L^{2}(\Omega))} + \|u_{0}\|_{\mathcal{D}(-\Delta)} + \|u_{1}\|_{V(\Omega)} \leq \frac{\nu}{C_{2}}r,$$
(4)

$$\int_{0}^{+\infty} (\partial_t^2 u, \phi)_{L^2(\Omega)} + c^2(u, \phi)_{V(\Omega)} + \nu(\partial_t u, \phi)_{V(\Omega)} ds - \int_{0}^{+\infty} \alpha(u \partial_t^2 u + (\partial_t u)^2 + f, \phi)_{L^2(\Omega)} ds = 0,$$

$$\exists ! \ u \in X^2 := H^1(\mathbb{R}^+; \mathcal{D}(-\Delta)) \cap H^2(\mathbb{R}^+; L^2(\Omega)) :$$
$$\exists r_* > 0 : \quad \forall r \in [0, r_*[\quad (4) \Rightarrow \quad \|u\|_{X^2} \le 2r.$$

Application of M.F. Sukhinin's Theorem $Lu + \Phi(u) = F$

Definition for functionals and bilinear forms, U.Mosco, 1994

Definition

A sequence of functionals $G^m : H \to (-\infty, +\infty]$ is said to M-converge to a functional $G : H \to (-\infty, +\infty]$ in a Hilbert space H, if

1. (lim sup condition) For every $u \in H$ there exists u_m converging strongly in H such that

$$\overline{\operatorname{im}} G^m[u_m] \le G[u], \quad \text{as } m \to +\infty. \tag{5}$$

2. (lim inf condition) For every v_m converging weakly to u in ${\boldsymbol{\mathsf{H}}}$

$$\underline{\lim} G^m[\mathbf{v}_m] \ge G[\mathbf{u}], \quad \text{as } m \to +\infty.$$
(6)

Approximation of solutions on fractal domains by solutions on prefractal domains (irregular by regular)

- Von Koch 2D mixtures (mixed Poisson problem, R. Capitanelli, A. Vivaldi, 2010, 2011)
- cylindrical von Koch domain 3D (Venttsel problem, M. R. Lancia, P. Vernole, 2010)

Approximation of solutions on fractal domains by solutions on prefractal domains (irregular by regular)

- Von Koch 2D mixtures (mixed Poisson problem, R. Capitanelli, A. Vivaldi, 2010, 2011)
- cylindrical von Koch domain 3D (Venttsel problem, M. R. Lancia, P. Vernole, 2010)
- Self-similar *d*-set boundaries in \mathbb{R}^n , application to the Westervelt mixed problem A. Dekkers, ARP, A. Teplyaev, 2022; figs from Wikipedia

Approximation of solutions on fractal domains by solutions on prefractal domains (irregular by regular)

- Von Koch 2D mixtures (mixed Poisson problem, R. Capitanelli, A. Vivaldi, 2010, 2011)
- cylindrical von Koch domain 3D (Venttsel problem, M. R. Lancia, P. Vernole, 2010)
- Self-similar *d*-set boundaries in \mathbb{R}^n , application to the Westervelt mixed problem A. Dekkers, ARP, A. Teplyaev, 2022

Linear problems (mixed Poisson or Helmholtz problems)

• To define a quadratic form (energy or equivalent norm of H¹)

$$b_m(u_m, u_m) = \int_{\Omega_m} (|\nabla u_m|^2 + |u_m|^2) \mathrm{d}x + \int_{\partial \Omega_m} a_m |\operatorname{Tr} u_m|^2 d\mu_m$$

on $L^2(D)^2$, $\Omega_m \subset D$

- its Mosco-convergence is ensured if
 - + $\Omega_m \to \Omega$ by Hausdorff and characteristic functions ($\Omega \subset D$)
 - extension $H^{\sigma}(\Omega_m) \rightarrow H^{\sigma}(D)$ is uniform on m for $\mathsf{o} \leq \sigma \leq \mathsf{1}$
 - $\cdot \ \forall m \in \mathbb{N} \ \|\sqrt{a_m} \operatorname{Tr}_{\partial \Omega_m} u\|_{L^2(\partial \Omega_m, \mu_m)} \leq C_{\sigma} \|u\|_{H^{\sigma}(\mathbb{R}^n)} \text{ for } u \in H^{\sigma}(\mathbb{R}^n) \ \frac{1}{2} < \sigma \leq 1$
 - $a_m \mu_m \rightharpoonup a \mu$:

$$\forall \phi \in \mathsf{C}(\overline{\mathsf{D}}) \quad \int_{\partial \Omega_m} a_m \phi \mathsf{d}\mu_m \to \int_{\partial \Omega} a \phi \mathsf{d}\mu, \quad m \to +\infty$$

Linear problems (mixed Poisson or Helmholtz problems)

Let $(u_m)_{m\in\mathbb{N}}$ be the sequence of weak solutions on $(\Omega_m)_{m\in\mathbb{N}}$. If

• the sequence of solutions is **uniformly bounded on** *m*:

 $\|(E_{\mathbb{R}^n}u_m)|_D\|_{H^1(D)}\leq C,$

- $b_m(u_m, w) = o$ is the variational formulation on Ω_m ,
- $\cdot b_m(u_m, u_m) \stackrel{M}{\rightarrow} b(u, u) \text{ in } L^2(D) \text{ for } \Omega_m \rightarrow \Omega$

then

- $u|_{\Omega}$ (the weak limit of $E_{R^n}u_m|_D$) is the weak solution of b(u, w) = 0 on Ω ,
- $(E_{\mathbb{R}^n}u_m)|_{\Omega} \to (E_{\mathbb{R}^n}u)|_{\Omega}$ in $H^1(\Omega)$.

A. Dekkers, ARP, A. Teplyaev, 2022; M. Hinz, ARP, A. Teplyaev, SICON, 2021

For the Westervelt mixed problem, $\nu > 0$, p = 2

Let
$$\Omega_m \subset D \ \forall m \in \mathbb{N} \ (a_m = 1/\lambda^{n-1}(\Gamma_m) \to 0, \ \mu_m = \lambda^{n-1}, \ \mu)$$

$$\begin{split} F_{m}[u,\phi] &:= \int_{o}^{T} \int_{\Omega_{m}} [\partial_{t}^{2} u\phi + \nabla u \nabla \phi + \nu \nabla \partial_{t} u \nabla \phi] \, d\lambda^{n} dt \\ &+ \int_{o}^{T} \int_{\Gamma_{m}} a_{m} [\operatorname{Tr}_{\partial\Omega_{m}} u + \nu \operatorname{Tr}_{\partial\Omega_{m}} \partial_{t} u] \, \operatorname{Tr}_{\partial\Omega_{m}} \phi \, d\lambda^{n-1} dt \\ &+ \int_{o}^{T} \int_{\Omega_{m}} [-\alpha (u \partial_{t}^{2} u) - \alpha (\partial_{t} u)^{2} + f] \phi \, d\lambda^{n} dt \end{split}$$

For all $u \in L^2([0,T]; L^2(D))$, fixed $\phi \in L^2([0,T], H^1(D))$

$$\overline{F}_m[u,\phi] = \begin{cases} F_m[u,\phi] & \text{if } u \in H^1(]o, T[,H^1(D)) \cap H^2(]o, T[;L^2(D)), \\ +\infty & \text{otherwise} \end{cases}$$

A. Dekkers, ARP, A. Teplyaev, 2022

For the Westervelt mixed problem, \mathbb{R}^2 , \mathbb{R}^3 , $\nu > 0$, p = 2

Theorem

1.
$$(\mathbf{u} \mapsto \overline{F}_m[\mathbf{u}, \phi]) \xrightarrow{M} (\mathbf{u} \mapsto \overline{F}[\mathbf{u}, \phi]) \text{ in } L^2([\mathbf{0}, T]; L^2(D))$$

2. $\forall \phi \in L^2([0,T]; H^1(D)) \text{ if } v_m \rightharpoonup u \text{ in } H(D) = H^1(]0, T[, H^1(D)) \cap H^2(]0, T[; L^2(D)),$

then
$$F_m[v_m, \phi] \xrightarrow[m \to +\infty]{} F[u, \phi]$$

3. $\partial \Gamma_{Dir,\Omega_m} = \partial \Gamma_{Dir,\Omega} = \partial \Gamma_{Dir,D}$

$$(E_{\mathbb{R}^n}u_{0,m})|_{\Omega} \xrightarrow[m \to +\infty]{} u_0, \quad (E_{\mathbb{R}^n}u_{1,m})|_{\Omega} \xrightarrow[m \to +\infty]{} u_1 \text{ in } H^1(\Omega),$$

then $(E_{\mathbb{R}^n}u_m)|_D \rightharpoonup u^*$ in H(D) with $u^*|_\Omega = u ((E_{\mathbb{R}^n}u_m)|_\Omega \rightarrow u$ in $H^1(\Omega))$

Roughness, fractals

Models with boundary absorbtion

When fractals could appear

Influence of irregular shapes on the regularity of solutions

Boundary Irregularity

Example of the Westervelt equation

Well-posedness for mixed conditions

On the Mosco convergence

Conclusion

Conclusion

Solving PDEs on domains with Non-Lipschitz boundaries.

Approximation of *d*-sets.

Rough boundaries are the energy minimizers.

Thank you very much for your attention!