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7th Cornell Conference on Analysis, Probability, and
Mathematical Physics on Fractals: June 4-8, 2022

Home » 7th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals

Welcome!

Planning has begun for Fractals 7 (June 9-13, 2020). The purpose of this conference, held every three years, is to bring together
mathematicians who are already working in the area of analysis and probability on fractals with students and researchers from related
areas. Information will be posted here as it becomes available.

Financial support will be provided to a limited number of participants to cover the cost of housing in Cornell single dormitory rooms and
partially support other travel expenses. Students and junior researchers from underrepresented groups in STEM are particularly
encouraged to apply for travel funding. Well-established researchers are encouraged to use their own travel funding; the NSF expects
that most funds will be expended on otherwise unfunded mathematicians.

Registration details will be publicized once available.

All general inquiries can be sent to: fractals_math@cornell.edu
Conference Organizers:

o Robert Strichartz (chair), Cornell University

o Patricia Alonso Ruiz, Texas A&M University

o Michael Hinz, Bielefeld University

o Luke Rogers, University of Connecticut

o Alexander Teplyaev, University of Connecticut
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abstract of the talk

The talk will discuss several approaches to study non-linear non-Lipschitz
PDE-like equations on fractals, in particular the joint work with Michael Hinz and
Anna Rozanova-Pierrat, and also [Hinz-Meinert], [Falconer-Hu], [Strichartz et al.]
| also will discuss a general infinite dimensional framework in a joint work with
Maria Gordina and Michael Rockner Ornstein-Uhlenbeck processes with
singular drifts: integral estimates and Girsanov densities. We consider a
perturbation of a Hilbert space-valued Ornstein-Uhlenbeck process by a class of
singular nonlinear non-autonomous maximal monotone time-dependent drifts. The
only further assumption on the drift is that it is bounded on balls in the Hilbert
space uniformly in time. First we introduce a new notion of generalized solutions
for such equations, which we call pseudo-weak solutions, and prove that they
always exist and obtain pathwise estimates in terms of the data of the equation.
We show that pseudo-weak solutions have continuous sample paths and the laws
are absolutely continuous with respect to the law of the original
Ornstein-Uhlenbeck process. We obtain integrability estimates of the associated
Girsanov densities. Some of our results concern non-random equations as well,
and results are new even in finite-dimensional autonomous settings.
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Non-linear equations on fractals: outline of the talk

@ Introduction

» Kigami ((1989) — current)

Strichartz et al. (2004 - )

Falconer-Hu (1999-2012)

Lancia, Vélez-Santiago, Vernole (2019)

Hinz—Meinert (2020-2022)

joint with Michael Hinz and Anna Rozanova-Pierrat (2021 — current)

Yy vV VvV VYV

@ joint with Maria Gordina and Michael Rockner
Ornstein-Uhlenbeck processes with singular drifts:
integral estimates and Girsanov densities

» selected technical details

e Motivation (as time permits)

This is a part of the broader program to develop probabilistic, spectral and
vector analysis on singular spaces by carefully building approximations by
graphs or manifolds.
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Kigami ((1989) — current)

2:00-2:45pm Jun Kigami (Kyoto University, Japan) Conductive Homogeneity of
Compact Metric Spaces and Construction of p-Energy

In the ordinary theory of Sobolev spaces on domains of R”, the p-energy is defined
as the integral of |V F|P. In this paper, we try to construct a p-energy on
compact metric spaces as a scaling limit of discrete p-energies on a series of
graphs approximating the original space. In conclusion, we propose a notion called
conductive homogeneity under which one can construct a reasonable p-energy if p
is greater than the Ahlfors regular conformal dimension of the space. In particular,
if p = 2, then we construct a local regular Dirichlet form and show that the heat
kernel associated with the Dirichlet form satisfies upper and lower sub-Gaussian
type heat kernel estimates. As examples of conductively homogeneous spaces, we
present new classes of square-based self-similar sets and rationally ramified
Sierpinski crosses, where no diffusions were constructed before.
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Strichartz et al. (2004 —)

P.E. Herman, R. Peirone, R.S. Strichartz,
p-energy and p-harmonic functions on Sierpinski gasket type fractals.
Potential Anal. 20 (2004), no. 2, 125-148.

R. Shimizu,

Construction of p-energy and associated energy measures on the Sierpinski
carpet,

arXiv:2110.13902

Shiping Cao, Qingsong Gu, Hua Qiu
p-energies on p.c.f. self-similar sets
arXiv:2112.10932

Fabrice Baudoin, Li Chen

Sobolev spaces and Poincaré inequalities on the Vicsek fractal
arXiv:2207.02949
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Herman, P. Edward [Herman, Paul Edward] (1-CHI);

Peirone, Roberto (I-ROME2); Strichartz, Robert S. (1-CRNL)

p-energy and p-harmonic functions on Sierpinski gasket type fractals. (English
summary)

Potential Anal. 20 (2004), no. 2, 125-148.

For 1 < p < oo the classical p-energy of a suitable function u is defined to be the integral
of |VulP, where V is the gradient. The techniques in [J. Kigami, Analysis on fractals,
Cambridge Univ. Press, Cambridge, 2001; MR1840042] for the case p = 2 are extended.
That is, the fractal is approximated by a sequence of “grids” endowed with their discrete
p-energies. A nonlinear renormalization problem is solved to find an appropriate scaling
factor and a corresponding self-similar discrete p-energy. This makes it possible to
construct a limiting model, analogous to the case p = 2, via an increasing sequence
of discrete p-energies. The existence proof relies on Schauder’s fixed point theorem.
The uniqueness of the p-energy remains open. A function is called p-harmonic when
it minimizes the p-energy subject to boundary conditions. Its uniqueness is again only
conjectured. Numerical approximations for the Sierpinski gasket are presented. The
existence proof is generalized to “weakly completely symmetric fractals” in the sense of
[R. Peirone, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 3 (2000), no. 2, 431-460;
MR1769995]. Volker Metz



Falconer—Hu (1999-2012)

K. Falconer, J. Hu, Jiaxin; Y. Sun,
Inhomogeneous parabolic equations on unbounded metric measure spaces.
Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 5, 1003-1025.

K. Falconer, J. Hu,
Nonlinear diffusion equations on unbounded fractal domains.
J. Math. Anal. Appl. 256 (2001), no. 2, 606-624.

K. Falconer, J. Hu,
Non-linear elliptical equations on the Sierpinski gasket.
J. Math. Anal. Appl. 240 (1999), no. 2, 552-573.

K. Falconer,
Semilinear PDEs on self-similar fractals.
Comm. Math. Phys. 206 (1999)
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Falconer, Kenneth J. (4-STAN); Hu, Jiaxin [Hu, Jiaxin'] (PRC-TSI);

Sun, Yuhua [Sun, Yuhua'] (PRC-TSI)

Inhomogeneous parabolic equations on unbounded metric measure spaces.
(English summary)

Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 5, 1003-1025.

This paper is concerned with weak solutions to the Cauchy problem for the semi-linear
parabolic equation

(1) u=Au+uP + f(z), t>0,zeM, u(0,z)=q¢(x),

where p > 0 and the functions f, ¢: M — R are measurable and nonnegative, with (M, d)
alocally compact separable metric space and p a Radon measure on M with full support.

Depending on the fractal dimension « and the walk dimension 3 of M, local and global
existence and regularity properties of solutions to (1) are investigated. Conditions for
these properties are imposed on the heat kernel as well as on the functions f,¢. In
particular, conditions for non-existence and local/global existence of solutions to (1)
are provided. The regularity of solutions of (1) is studied in terms of Holder continuity
exponents. Sergey Dashkovskiy



Semilinear PDEs on Self-Similar Fractals

K. J. Falconer

Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, Scotls
E-mail: kif@st-and.ac.uk

Received: 11 December 1998 / Accepted: 22 March 1999

Abstract: A Laplacian may be defined on self-similar fractal domains in terms of a s|
able self-similar Dirichlet form, enabling discussion of elliptic PDEs on such domai
In this context it is shown that that semilinear equations suctvas u” = 0, with zero
Dirichlet boundary conditions, have non-trivial non-negative solutionsdf® < 2 and
p>1Llorifv>2andl< p < (v+2)/(v —2), wherev is the “intrinsic dimension”
or “spectral dimension” of the system. Thus the intrinsic dimension takes the réle o
Euclidean dimension in the classical case in determining critical exponents of semili
problems.



Lancia, Vélez-Santiago, Vernole (2019)

A quasi-linear nonlocal Venttsel’ problem of Ambrosetti-Prodi type on
fractal domains. Discrete Contin. Dyn. Syst. 39 (2019), no. 8, 4487-4518.

Summary: "We investigate the solvability of the Ambrosetti-Prodi problem for the
p-Laplace operator A, with Venttsel’ boundary conditions on a two-dimensional
open bounded set with Koch-type boundary, and on an open bounded
three-dimensional cylinder with Koch-type fractal boundary. Using a priori
estimates, regularity theory and a sub-supersolution method, we obtain a
necessary condition for the non-existence of solutions (in the weak sense), and the
existence of at least one globally bounded weak solution. Moreover, under
additional conditions, we apply the Leray-Schauder degree theory to obtain results
about multiplicity of weak solutions.”
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Hinz—Meinert (2020-2022)

Michael Hinz, Melissa Meinert,

Approximation of partial differential equations on compact resistance spaces.
Calc. Var. Partial Differential Equations 61 (2022), no. 1, Paper No. 19, 47 pp.
Michael Hinz, Melissa Meinert,

On the viscous Burgers equation on metric graphs and fractals.
J. Fractal Geom. 7 (2020), no. 2, 137-182.

Burgers equation and Cole—Hopf transform:

v =Au— (u,Viu

v = —dd*u — d(u?)/2

Main difficulty: there are no continuous vector fields on fractals!
Define a “unversal” space of finite energy (or L2) differential forms H

Sasha Teplyaev (UConn) NON-LINEAR EQUATIONS ON FRACTALS July 20, 2022 11 / 55



joint with Michael Hinz and Anna Rozanova-Pierrat (2021
— current)

@ large compact classes of fractal domains, including fractal shape optimization
@ large collections of fractal PDE, including non-linear

Adrien Dekkers, Anna Rozanova-Pierrat, T.

Mixed boundary valued problems for linear and nonlinear wave equations in
domains with fractal boundaries.

Calc. Var. Partial Differential Equations 61 (2022), no. 2, Paper No. 75, 44 pp.

Michael Hinz, Anna Rozanova-Pierrat, Anna; T.
Non-Lipschitz uniform domain shape optimization in linear acoustics.
SIAM J. Control Optim. 59 (2021), no. 2, 1007-1032.

Michael Hinz, Frédéric Magoulés, Anna Rozanova-Pierrat, Marina Rynkovskaya, T.

On the existence of optimal shapes in architecture.
Appl. Math. Model. 94 (2021), 676-687.
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Part 2: Singular Stochastic Partial Differential Equations
(SPDE) in Hilbert Spaces

On a singular spaces, such as a fractal with a Dirichlet form, there are several
natural Hilbert spaces:

o L2 with respect to a singular measure

o H! = W2 = Dom £ the space of finite energy functions that are in L;ZL
e Dom(A,) where v is possibly a different singular measure

» the situation is especially delicate when p 1 v

Conclusion: we are interested in SPDE on Hilbert spaces with most relaxed
assumptions on the coefficients.

M. Gordina, M. Rockner, T.

Singular perturbations of Ornstein-Uhlenbeck processes:
integral estimates and Girsanov densities.

Probability Theory and Related Fields 178 (2020)
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Non-smooth perturbations of the Ornstein-Uhlenbeck
operators

G. Da Prato and M. Rockner, Singular dissipative stochastic equations in Hilbert
spaces, Probab. Theory Related Fields, 124 (2002)

(1)  dX; = (AX; + F(t,X;))dt + cdW;, Xo =x € H

(Q,.’F,_.’Ft,]P) a filtered probability space
H a separable Hilbert space
W; a cylindrical Wiener process in H

(A, Dp) the generator of a Co-semigroup e' such that there is an w > 0 such
that for any x € Dy

(Ax, x) < —w|x|?

o and 0~ ! arein B (H) with o being self-adjoint and positive. Moreover, there
is an a > 0 such that

/ (14 t7%) [|leo|3sdt < oo
0
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F (t,-) : [0,00) X Dg(t,.) — 2" a family of maps such that for any t € [0, co)

we have Df(;.y = DF C H
F (t,-) an m-dissipative map: for any x1, x € Df

(yl — Y2, X1 — X2> < 07

forallys € F(t,x1),y2 € F(t,x2),t € [0,00), and for any v > 0 and
t € [0, 00)

Range (v/ — F (t,-)) = H.

Fo (t, x) it is known that for any (t, x) € [0, 00) X Dk, the set F (t, x) is
non-empty, closed and convex, and so for any x € Df

Fo(t,x):={y € F(t,x): |y| =inf{|z|,z € F(t,x)}}
is a well-defined map
a (u) an increasing function a : [0, 00) — [0, c0) such that

|Fo (t,x)| < a(|x]),(t,x) €[0,00) x H,

where we allow for lim,_, o a (u) = oo.
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Yosida approximation to F:

for any a > 0

1
Fo (t,x) := ;(Ja(x)—x),x € H,

where

Jo (x):= (I — aF) ' (x), 1(x) = x.

Then each F, is single-valued, dissipative, Lipschitz continuous and satisfies
lim F, (t,x) = Fo (t,x),
a—0

|Fo (£, x) | < [Fo (2, %) |

for x € D (F), and F,, satisfy the same growth condition as Fy.
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dXP = (AX: + F° (t, X7)) dt + odW,
(2) Xy =x€H

e Moments of X (x)

t
Stochastic Wy, a0 (t) := e?x + [ e(!=5)4adW (s)
0

convolution
Wo,a,0 (t) is a Gaussian random variable with values in H with the mean 0 and

. t
the covariance operator Q;x = fo eAo2eA" xds.

Moment space M the space of C?—functions ¢ : (0, 00) — [0, c0) such that
® ¢ is an increasing convex function;
e the limit uai(:(;l)l) —— L, exists, and L, € [1, 0]

u—roo
Remark. This definition is motivated by de la Vallée-Poussin Theorem (a criterion

for uniform integrability).

Examples of functions in M.

¢ (u) =uP,p>1with L, = p;
o (u) = e" with LLP_oo,
¢(u) =uln(u+ 1) with L, = 1.
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Theorem (p-moments). Consider (2) with F* being dissipative, Lipschitz
continuous and satisfying

|F* (t,x) | < a(|x]),(t x) € [0,00) x H.

Then for any ¢ € M the following (uniform) estimate holds

—wt

e
25 (X7 () ) < 55

@ (41x1%) + E* Ky + E*Kp ,a()5
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where K, and K, ., 4(.) are the following random functions
sup Wo,a,0 (5)>

a
wt ( s€[0,t]
K‘P#‘)ya(') (t) = 7LP wz

T

1
Ko(t):=-¢ |4

2 sup WO,A,a' (S)

selo’t]

Note that these functions are finite a.s.

Examples of functions ¢ € M and a (u):

¢ (u) and a (u) are polynomials;

o (u) is an exponential function and a (u) is a linear function (Fernique's
Theorem).
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e Girsanov transform for x € D (A)
t
palxst) i=exp | [ (07 Fals, Wana(5)), dW(s)
0

1 t
~5 [ 17 Fals Wea (1) s )

Theorem (Uniform integrability of Girsanov densities). For any growth
function a(-) and any fixed x and t, there is an increasing positive unbounded
function W(-) such that

Epa(x, )W (pa(x,t)) <1

Remark. The function @ does not depend on a! Examples of functions W: if
a(u) is of polynomial growth, then W(u) can be chosen to be a power of log; if
a(u) is of exponential growth, then W(u) can be chosen to be an iterated log.

Method of proof: localization (stopping times) for the stochastic convolution
Wiao (t) and [y e=(=)a (W40 () [) ds
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Lemma

Consider
Xe = Z; + Wp,a,0(t)

dZt = (AZt + F(t, Zt + WO,A,O' (t))) dt, Z() = X,
with coefficients satisfying our Assumptions and its mild solution Z; that can be

obtained as a weak limit solutions of regularized equation. Then |Z;| is an
absolutely continuous function almost surely satisfying

d

= (1Z) < —wlZ |+ a(1Woas (1))

for almost all t > 0, and
t
1Z: < Ixle™" + [ €m0 9a (Wonq (5) 1) ds
0

forall t > 0.
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Application

dX; = (AX; + F (X;))dt + cdW,, Xo =x € H

ke D(A),e >0,t) € (0, T],0 < t < t,

t t
Fke (t,x) = — = Ak + Sk + Fo (x — ek) ,
to to to
t t
Fke (t,x) := ~ Ak + k + F (x - Ek) ,
Lo fo fo

Gh= (t,x) := o1 (FX° (t,x) — Fa (t, X)) .

Theorem (Quasi-invariance). At any fixed time ty € [0, T] the distribution of
X, (to) is quasi-invariant under translations by elements in D (A). More
precisely, for any unit vector k € D (A), 0 < € < min{ty,1} and t, € (0, T],
the distribution of the random variable X, (to, x) + €k has a density, pg; _ , (¥).
with respect to the distribution of the random variable X, (tp, x).
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Further directions:
® smoothness results for an invariant measure for (1)
e closability of the gradient

o looking for examples with an invariant measure which is not absolutely
continuous with respect to the Gaussian measure
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Quasi-invariance and its applications

(X, B) a measure space

G a group of automorphisms of (X, 28)

1 a Radon measure on (X, 2B) is said to be quasi-invariant under the action by
G if the transformed measure pg (A) :=p (g_lA), A € B, is equivalent to the
measure (.

Jg (x) ‘L’:f (x),x € X is the Radon-Nikodym derivative

Example X = W is an abstract Wiener space with the Gaussian measure p, and
G is the group of translations by elements in the Cameron-Martin subspace H.
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o Integration by parts formula when G is the group of translations.
Jn (x) % OJE;, (x),x € X, then

e=

R L P IS EEIL EL aY

/ Dif (x) dpt (x) = / £ (x) jn (%) dp (x) -
X X

e Quasi-invariance as smoothness of measures in infinite dimensions.

® Regularity of invariant measures in infinite dimensions and for degenerate
semigroups; closability of the gradient (joint with M. Réckner)
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Technical details: Pseudo-weak convergence
For (S, F, p) is o-finite measure space, L% (S, u; H) we denotes the
JF-measurable functions defined up to sets of p-measure zero and equipped with

the topology of convergence in measure. We use —— for the weak convergence
n—oo

in Banach spaces.
Suppose f, f, € L°(S, u; H), n € N. We say that {f};2, converges
pseudo-weakly to f, denoted by

P (fn) —= P(f) in L2 (S, pa; H) for any A € F with u(A) < oo (1)
and for some v : H — H defined by

= wo(lhln), ifh#0,

w(h) = { , ifh=0 @

0

where 19 : Ry — Ry is a strictly increasing continuous function with 1p(0) = 0.
In this case we say that f is a -pseudo-weak limit of the sequence {f,} e ;.
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The definition of 1»-pseudo-weak limits depends on the choice of function )
which we usually fix. Typical examples for such a function 1) are ¥(h) = h or

h

h)= ——,h € H. 3
v = { s )
Proposition. Suppose f, f, € L% (S, u; H). Then for any bounded
Y : H — H we have that f, — f if and only if
[ ) = (). ) diu ——— 0 )

for any h € H and any A € F with p(A) < oo.
For a fixed 1) the pseudo-weak limit is unique.
The topology of L% (S, u; H) defined by convergence in measure

lim p({|fi — flu>e}NA)=0 foralle >0, Ac F, u(A) < co

n—oo

implies pseudo-weak convergence, but these two types of convergence are not
equivalent in general.
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The following assertion is an easy consequence of the Banach-Saks Theorem
applied to the Hilbert space L? (S, u; H) or, more elementarily, of Fatou's Lemma.

Proposition
Suppose f, f, € L2 (S,u; H), n € N, and
£— . f, (5)

then
|flw < limsup |fo|ln  p-ae
n—oo
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Let f,f, € L° (S, u; H), n € N, such that

£, —Y < f.

n—oo

Then
|fln < limsup |fh|p  p-ae.
n—-oo

Let 1) in the definition of pseudo-weak convergence be bounded. If
f, € L°(S,; H), n € N, are such that

sup |fpln < oo p—a.e.,
neN

then there exists f € L% (S, u; H) such that for some subsequence {nc}ren

f"k L\ f.
k— o0
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Yosida approximations to A

We need the Yosida approximations A, to A for small a.. Surprisingly, it is not

easy to find a reference. Following Hille-Yosida. let p (A) be the resolvent set,
then the resolvent of A is defined as

R (A) := (Al — A)™', X € p(A) € B(H),
R)‘(A) : H — Daj.

Recall that for A > 0 we have ||Rx (A) || < 1/A. In addition,
AR\ (A)x —— x, x € H. (6)
A—oc0

Note that ARy (A) x = Ry (A) Ax, x € Dj. Finally, the Yosida
approximations to A are defined by

A.x:= LAR: (A)x,x € H. (7)
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The Yosida approximations A, to A satisfy the following properties, see Brezis

book 2011, where
Jo = (I — aA)7L,
Jo € B(H), [[Jall < 1.
Aox —— Ax, x € Dap,
a—0
|AaX|H < |AX|H, X € DA,
Aox = Jo,Ax, x € Dap,
A, € B(H),
1Aall < 2
Aq = Ao = (Ja — 1)
Proposition. Under Assumption ??
Jall <1/(1 + aB)

and
<Aax’ X) < _ﬁalxli[
for all x € H, where

ﬁ a = .
1+apB
Sasha Teplyaev (UConn) NON-LINEAR EQUATIONS ON FRACTALS July 20, 2022
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Yosida approximations to F

To define pseudo-weak solutions we use the Yosida approximation to F: fix
t € [0,00) and set F := F(t,-). Then for any & > 0 we define
1
Foai=—(Ja(x) —x),x € H, (10)

where
Jo (x) := (I = aF) 7" (x), 1 (x) = x,

which is a nonlinear generalization of (8). Then each F,, is single-valued,
dissipative, Lipschitz continuous with Lipschitz constant less than % and satisfies

Olcii)n() Fo (x) = Fy(x),x € Df, (11)
|Fa (x) 1 < [Fo (x) |n; x € Dr. (12)

It is clear from the last inequality that for each xg € Df

2 2
Fa(t; )ln < [Fo(t, X0}l + —Ixln < a(jxo[n) + _|x[n, x € H.
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Part 3: Motivation

Fractal

Geometry Fractal Geometry and Stochastics V pp 175-207 ‘ Cite as
and

Stochastics V

From Self-Similar Groups to Self-Similar Sets and
Spectra
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Fractals in Graz 2001 pp 145-183 | Cite as

Random Walks on Sierpifiski Graphs: Hyperbolicity
and Stochastic Homogenization

Vadim A. Kaimanovich
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Proceedings of Symposia in

PURE MATHEMATIC

Volume 77

Analysis on Graphs
and Its Applications

stitute for Mathematical Sciences

Americas Mathematlcal Soclety
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DOI: 10.1090/pspum/077/2459868 - Corpus ID: 279025

Groups and analysis on
fractals

V. Nekrashevych, A. Teplyaev = Published 2005 + Mathematics

We describe relation between analysis on fractals and the theory of

self-similar groups. In particular, we focus on the construction of the
Laplacian on limit sets of such groups in several concrete examples,
and in the general p.c.f. case. We pose a number of open questions.
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What are Hausdorff and spectral dimensions of a self-similar set?
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Figure 7

Figure 8
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For the circle, ds = 1
For Riemannian d-manifolds, ds = dy = d

In general, ds can be defined using the asymptotics of eigenvalues or, equivalently,

asymptotics of the heat kernel.
If ds is well defined, then

recurrence of the diffusion <= ds <2

in which case we sometimes can prove Kigami's formula

dy.r

ds =2————
s dyr+1

where dy,r is the effective resistance Hausdorff dimension.
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On the Sierpinski gasket (S.Goldstein 1984)

log 9 log 3
diopo =1 < ds = < dy =
top * " logh " " log2

On the basilica Julia set we formally computed (Rogers-T, 2010)

g log 8
dtopo =1< dH,topo 1+ — <ds<dy=
log 3 log 3
Sasha Teplyaev (UConn) NON-LINEAR EQUATIONS ON FRACTALS July 20, 2022
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6/14/2014 Frangois Englert - Wikipedia, the free encyclopedia

Francois Englert

From Wikipedia, the free encyclopedia

Francois Baron Englert (French: [agleg]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of'the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,

C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.[4] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,

Francois Englert

Frangois Englert in Israel, 2007




Nuclear Physics B280 [FS 18] (1987) 147-180
North-Holland, Amsterdam

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES

F. ENGLERT, J.-M. FRERE! and M. ROOMAN?

Physique Théorique, C.P. 225, Université Libre de Bruxelles, 1050 Brussels, Belgium

Ph. SPINDEL

Faculté des Sciences, Université de 'Etat a Mons, 7000 Mons, Belgium

Received 19 February 1986

We take a model of foamy space-time structure described by self-similar fractals. We study
the propagation of a scalar field on such a background and we show that for almost any initial
conditions the renormalization group equations lead to an effective highly symmetric metric at
large scale.
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the euclidean fixed point. Vertices are labelled according to fig. 4.



170 R. MEYERS, R.S. STRICHARTZ AND A. TEPLYAEV

q-
..
B
Sy Y as ‘
q: qs

Figure 6.4. Geometric interpretation of Proposition 6.1.
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The Spectral Dimension of the Universe is Seale Dependent

I, Ambjgm,"** . Jurkiewicz, " and R, Lol

"The Nils Bohr Instne Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark
"Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University,
Reymonta 4, PL 30-059 Krakow, Poland
JTnstitute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3384 CE Utrecht, The Netherlands
(Received 13 May 2005; published 20 October 2005)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing” at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOL 10.1103/PhysRevLett 95.171301 PACS numbers: 04.60.Gw, 04.60Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator’—A shared  tral dimension, a diffeomorphism-invariant quantity ob-
hope of researchers in otherwise disparate approaches to  tained from studying diffusion on the quantum ensemble
quantum gravity s that the microstructure of space and o geometries. On large scales and within measuring ac-
time may provide a physical regulator for the ultraviolet ~ curacy, it is equal to four, in agreement with earlier mea-
infinities enconntered in nermrhative anantum field thearv.— surements of the laroe-seale dimensionality hased on the



other hand, the “‘short-distance spectral dimension,” ob-
tained by extrapolating Eq. (12) to o — 0 is given by

Dy(o = 0) = 1.80 * 0.25, (15)

and thus is compatible with the integer value two.

Random Geometry and Quantum Gravity

A thematic semestre at Institut Henri Poincaré

14 April, 2020 - 10 July, 2020

Organizers : John BARRETT, Nicolas CURIEN, Razvan GURAU,
Renate LOLL, Gregory MIERMONT, Adrian TANASA
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Fractal space-times under the microscope:
a renormalization group view on Monte Carlo data

Martin Reuter and Frank Saueressig
Institute of Physics, University of Mainz,
Staudingerweg 7, D-55099 Mainz, Germany
E-mail: reuter@thep.physik.uni-mainz.de,
saueressig@thep.physik.uni-mainz.de

ABSTRACT: The emergence of fractal features in the microscopic structure of space-time
is a common theme in many approaches to quantum gravity. In this work we carry out a
detailed renormalization group study of the spectral dimension d; and walk dimension d,,
associated with the effective space-times of asymptotically safe Quantum Einstein Grav-
ity (QEG). We discover three scaling regimes where these generalized dimensions are ap-
proximately constant for an extended range of length scales: a classical regime where
ds = d,d,, = 2, a semi-classical regime where dy = 2d/(2+d), d,, = 2+d, and the UV-fixed
point regime where dy = d/2,d,, = 4. On the length scales covered by three-dimensional
Monte Carlo simulations, the resulting spectral dimension is shown to be in very good

agreement with the data. This comparison also provides a natural explanation for the ap-
parent puzzle between the short distance behavior of the spectral dimension reported from
Causal Dynamical Triangulations (CDT). Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

KEYWORDS: Models of Quantum Gravity, Renormalization Group, Lattice Models of Grav-
ity, Nonperturbative Effects




Fractal space-times under the microscope:

A Renormalization Group view on Monte Carlo data

Martin Reuter and Frank Saueressig

a classical regime where d; = d,d,, = 2, a semi-classical regime where ds; = 2d/(2 + d),d,, =
2+ d, and the UV-fixed point regime where ds = d/2,d,, = 4. On the length scales covered
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Causal dynamical triangulations

25,971 views Jan 26, 2013 Causal dynamical triangulation (CDT) is a lattice model
of quantum gravity. In two space-time dimensions (instead of the-four we live in) it
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Dynamical triangulation of the 2-torus

1,435 views Sep 7, 2013 This video illustrates a Monte Carlo simulation for two-dimensional
guantum gravity on a torus. Starting with a regular triangulation of the torus repeatedly a so-called
flip move is performed on a randomly chosen edge. The triangulations obtained after a large
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Dynamical triangulation of the 2-torus

1,435 views Sep 7, 2013 This video illustrates a Monte Carlo simulation for two-dimensional
quantum gravity on a torus. Starting with a regular triangulation of the torus repeatedly a so-called
flip move is performed on a randomly chosen edge. The triangulations obtained after a large



D. J. KELLEHER, H. PANZO, A. BRZOSKA AND A. TEPLYAEV

Fi1GURE 1. Barycentric subdivision of a 2-simplex, the graphs G,
GT and GT.

F1GURE 2. Adjacency (dual) graph G, in bold, and the barycen-
tric subdivision graph pictured together with the thin image of

aT.



BARLOW-BASS RESISTANCE ESTIMATES FOR HEXACARPET

o X;éﬁ%"’ﬁ——n-r 2
P ST
DS s i -0 W
- ya ‘Fl) 1
R0 4
R .
e
g U, T L
ron e g FS R
(m;:”;}ﬁ} 5&@__(5&?‘!\ «%«;ﬁ
Y ) 7_‘_,6‘\ » ST X
T @%ﬁ- 7Y
T4 = \:;\J:,?
j = @@

FIGURE 3. On the left: the graph GT for barycentric subdivision
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Brownian motion:

Thiele (1880), Bachelier (1900)

Einstein (1905), Smoluchowski (1906)

Wiener (1920'), Doob, Feller, Levy, Kolmogorov (1930'),
Doeblin, Dynkin, Hunt, Ito ...

distance ~ V time

“Einstein space—time relation for Brownian motion’

Wiener process in R" satisfies %E| W;|? = t and has a
Gaussian transition density:

1 Ix —y?
pt(x,y) = WGXP T

Sasha Teplyaev (UConn) NON-LINEAR EQUATIONS ON FRACTALS July 20, 2022 42 / 55



o De Giorgi-Nash-Moser estimates for elliptic and parabolic PDEs;

o Li-Yau (1986) type estimates on a geodesically complete Riemannian
manifold with Ricci > 0:

X 2
pt(x,y) ~ % exp (—cd(’y)>

distance ~ V' time
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Gaussian:

1 Ix —yI?
pt(x,y) = WGXP T

Li-Yau Gaussian-type:

1 d(x,y)?
pe(x,y) ~ Vi VD) exp (—cf>

Sub-Gaussian:

_1
d(x,y)dw>

1
pe(x,y) ~ WGXP —-c ( t

distance ~ (time)ﬁ
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Brownian motion on RY: E|X; — Xo| = ct!/2.

Anomalous diffusion: E|X; — Xo| = o(t'/2), or (in regular enough situations),
E|X; — Xo| ~ t/dw

with d,, > 2.

Here d,, is the so-called walk dimension (should be called “walk index”
perhaps).

This phenomena was first observed by mathematical physicists working in the
transport properties of disordered media, such as (critical) percolation clusters.
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tdw—T1

1 d(x,y)®"
pt(x,y) ~ WGXP —C——

distance ~ (time)ﬁ

dy = Hausdorff dimension

% = d,, = "walk dimension” (~y=diffusion index)
2(% = ds = “spectral dimension” (diffusion dimension)

First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami, Barlow, Bass,
Perkins (mid 1980'—)
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analysis on

A part of an infinite Sierpinski gasket.
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Figure: An illustration to the computation of the spectrum on the infinite
Sierpiriski gasket. The curved lines show the graph of the function 2R(-).

Theorem (Rammal, Toulouse 1983, Béllissard 1988,
Fukushima, Shima 1991, T. 1998, Quint 2009)
On the infinite Sierpirniski gasket the spectrum of the Laplacian consists of a dense

set of eigenvalues P371(X) of infinite multiplicity and a singularly
continuous component of spectral multiplicity one supported on SR~1(JR).
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Half-line example

@ hd o hd A A A A A *—>

> > > > > > > < > < —>
1

qpP P9 9qp qp PqQ pPqQ qPp Pq;;
Transition probabilities in the pg random walk. Here p € (0,1) and g =1 — p.
f(0) — f(1), ifx=20
(Apf)(x) =4 f(x) —gf(x —1) — pf(x+1), if37™®x =1 (mod 3)
f(x) — pf(x —1) — gf(x+ 1), if37™Xx =2 (mod 3)

Theorem (J.P.Chen, T., 2016)

If p # % the Laplacian D, on £%(Z4.) has purely singularly continuous
spectrum. The spectrum is the Julia set, a topological Cantor set of Lebesgue
z(z> — 3z 4 (2 + pq))

pq

measure zero, of the polynomial R(z) =

This is a simple, possibly the simplest, quasi-periodic example related to the
recent results of A.Avila, D.Damanik, A.Gorodetski, S.Jitomirskaya, Y.Last,
B.Simon et al.
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Spectral zeta function

Theorem. (Derfel-Grabner-Vogl, Steinhurst-T., Chen-T.-Tsougkas, Kajino
(2007-2017)) For a large class of finitely ramified symmetric fractals the

spectral zeta function
2
G(s) =32

has a meromorphic continuation from the half-pain Re(s) > ds to C. Moreover,
all the poles and residues are computable from the geometric data of the fractal.
Here A; are the eigenvalues if the unique symmetric Laplacian.

o Example: ¢(s) is the Riemann zeta function up to a trivial factor in the case
when our fractal is [0, 1].

@ In more complicated situations, such as the Sierpinski gasket, there are
infinitely many non-real poles, which can be called complex spectral
dimensions, and are related to oscillations in the spectrum.
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0] ° O _ log9
ds ~ logh
O [ O
_ log4
10) ° (@) dR ~ logh
I'\O -dR |1 f\ds
) ° O
O ° O
0] ° O

Poles (white circles) of the spectral zeta function of the Sierpiriski gasket.
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Spectral Analysis of the Basilica Graphs (with Luke
Rogers, Toni Brzoska, Courtney George, Samantha Jarvis)

The question of existence of groups with intermediate growth, i.e.
subexponential but not polynomial, was asked by Milnor in 1968 and
answered in the positive by Grigorchuk in 1984. There are still open questions in
this area, and a complete picture of which orders of growth are possible, and
which are not, is missing.

The Basilica group is a group generated by a finite automation acting on the
binary tree in a self-similar fashion, introduced by R. Grigorchuk and A. Zuk in
2002, does not belong to the closure of the set of groups of subexponential
growth under the operations of group extension and direct limit.

In 2005 L. Bartholdi and B. Virag further showed it to be amenable,
making the Basilica group the 1st example of an amenable but not
subexponentially amenable group (also “Miinchhausen trick” and
amenability of self-similar groups by V.A. Kaimanovich).
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The basilica Julia set, the Julia set of z2 - 1 and the limit set of the basilica
group of exponential growth (Grigorchuk, Zuk, Bartholdi, Virdg, Nekrashevych,
Kaimanovich, Nagnibeda et al.).
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In 2005, V. Nekrashevych described the Basilica as the iterated
monodromy group, and there exists a natural way to associate it to the Basilica
fractal (Nekrashevych+T., 2008).

In Schreier graphs of the Basilica group (2010), Nagnibeda et al. classified
up to isomorphism all possible limits of finite Schreier graphs of the Basilica group.

In Laplacians on the Basilica Julia set (2010), L. Rogers+T. constructed
Dirichlet forms and the corresponding Laplacians on the Basilica fractal in two
different ways: by imposing a self-similar harmonic structure and a graph-directed
self-simliar structure on the fractal.

In 2012-2015, Dong, Flock, Molitor, Ott, Spicer, Totari and Strichartz
provided numerical techniques to approximate eigenvalues and eigenfunctions on
families of Laplacians on the Julia sets of z2 + c.

Sasha Teplyaev (UConn) NON-LINEAR EQUATIONS ON FRACTALS July 20, 2022 54 / 55



P A <
e s

-
a
9
1100 8

bl |b

& O
1010 )¢ 0100, €1001

b a
—_— e T —
Ty aCe— 5o . 0000, * 0001 o el =ea
T35 011020010 0IT a0 11T
b booa @ b b

1000 s, o101’ *1011
O O
o o
bl |b
1101
O

pictures taken from paper by Nagnibeda et. al.



Spectral Analysis of the Basilica Graphs

Replacement Rule and the Graphs G,
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Spectral Analysis of the Basilica Graphs

Distribution of Eigenvalues, Level 13

Cumulative Distribution of Eigenvalues, Level 13
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Spectral Analysis of the Basilica Graphs

One can define a Dirichlet to Neumann map for the two boundary points
of the graphs G,. One can construct a dynamical system to determine
these maps (which are two by two matrices). The dynamical system allows
us to prove the following.

Theorem

In the Hausdorff metric, limsup o(L(") has a gap that contains the
n—o0

interval (2.5,2.8).

Theorem (arXiv:1908.10505)

In the Hausdorff metric, limsup o(L(") has infinitely many gaps.
n—o0




Spectral Analysis of the Basilica Graphs

Infinite Blow-ups of G,

Definition
Let {kn}nen be a strictly increasing subsequence of the natural numbers.
For each n, embed Gy, in some isomorphic subgraph of Gy, ,. The
corresponding infinite blow-up is G 1= Up>0 Gk, .

Assumption
The infinite blow-up G, satisfies:

@ For n > 1, the long path of Gi _, is embedded in a loop v, of G, .

n—1

@ Apart from I, , and r,,_,, no vertex of the long path can be the
3,6,9 or 12 o'clock vertex of 7.

@ The only vertices of Gy, that connect to vertices outside the graph
are the boundary vertices of Gk, .
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Spectral Analysis of the Basilica Graphs

Theorem

(kn) _ (Un)
(1) o(L*, )= o(L§?).

Yn
(2) The spectrum of L(>) is pure point. The set of eigenvalues of L(>) is

U otg”) = | Mo},

n>0 n>0

where the polynomials ¢, are the characteristic polynomials of Lg"), as
defined in the previous proposition.

(3) Moreover, the set of eigenfunctions of L(>) with finite support is
complete in (2.




TECHNICAL DETAILS



Fix p, g>0, p+q=1, and define probabilistic Laplacians A,, on the segments
[0, 3"] of Z inductively as a generator of the random walks:

0 1
*—0
1 1
0 1 3
r—o—o— 0

q :o)n 2‘(371) 3n+1
1 qp P 4q 1

and let A = lim A,, be the corresponding probabilistic Laplacian on Z.
n—oo



If 2z #—1 % p and R(z)=2z(22+32+2+pq)/pq, then
R(z) € 0(A)) <= z € 0(Apnt1)

Theorem (Joe P. Chen and T., JMP 2016). o(A) = Jg, the Julia set
of R(z).

If p=gq, then o(A)=[—2, 0], spectrum is a.c.

If p # q, then o(A) is a Cantor set of Lebesgue measure zero, spectrum is

singularly continuous.
3
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There are uncountably many “random” self-similar Laplacians A on Z:
For a sequence X = {k;}32,, k; € {0, 1,2}, let
n .
X, =-> k;3
j=1
and A,, is a probabilistic Laplacian on [X,,, X,,+3"]:

X, X431 X,+2(3"1) X,+3"

1 qp P q 1

In the previous example k; = 0 for all 3.

Theorem.

For any sequence I we have 0(A) = Jgr. The same is true for the Dirichlet
Laplacian on Z (when k; = 0).



R. Grigorchuk and Z. Sunik, Asymptotic aspects of Schreier graphs and Hanoi
Towers groups.
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Sierpinski 3-graph Sierpinski 4-graph
(Hanoi Towers-3 group) (standard)



These three polynomials are conjugate:

Sierpiniski 3-graph (Hanoi Towers-3 group): f(x) = x?> —x — 3
f3)=3f(3)=5

Sierpiiski 4-graph, “adjacency matrix” Laplacian: P(X) = 5X — A2
P(0) =0, P'(0) = 5

Sierpiniski 4-graph, probabilistic Laplacian: R(z) = 422 + 52
R(0) = 0, R'(0) = 5



Theorem. Eigenvalues and eigenfunctions on the
Sierpinski 3-graphs and Sierpiniski 4-graphs are in
one-to-one correspondence, with the exception of the
eigenvalue z = —% for the 4-graphs.

V S



Sierpinski 3-graph ! Sierpinski 4-graph
(Hanoi Towers-3 group) (standard)
R(z) = 22% + 4z R(z) = %zz + %z



Let H and Jqy be Hilbert spaces, and U : Hy — H be an isometry.

Definition. We call an operator H spectrally similar to an operator Hy with
functions g and ¢y if

U*(H — 2)7'U = (po(2)Ho — ¢1(2)) ™"
In particular, if po(2) # 0 and R(2) = ¢1(2)/@o(2z), then

(=R

U*(H — 2)"'U =
( ) 20(2)

IfH=<S X)then

X Q
S — ZIO — X(Q - ZIl)_IX = QD()(Z)HO — (PI(Z)IO

Theorem (Malozemov and T.). If A is the graph Laplacian on a self-similar
symmetric infinite graph, then

Jr Co(Ax) CIrU D

where D, is a discrete set and J g is the Julia set of the rational function R.
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Let A be the probabilistic LapIaC|an (generator of a simple random walk) on the
Sierpiriski lattice. If z # -2 5 4, 2, and R(z) = z(4z + 5), then

R(z) € 0(A) <= z € o(A)

O'(A) :HRU®

B ot SIS
o
W
N
[=}

where @ = {—7}U < U R™{- 4})
and Jg is the Julia set of R(z)

Niw Ao




There are uncountably many nonisomorphic
Sierpinski lattices.
Theorem (T). The spectrum of A is pure point.
Eigenfunctions with finite support are complete.

0 AexeA AexeA AexeA A






Let A(0) pe the Laplacian with zero (Dirichlet) boundary condition at L. Then

the compactly supported eigenfunctions of A are not complete (eigenvalues in
€ is not the whole spectrum).

Let L) be the set of two points adjacent to AL and wg)) be the spectral

measure of A(0) associated with ]IaL(O)' Then supp(w(Ao)) = Jr has Lebesgue
measure zero and

d(w(AO) (e} R1,2)
dw(AO)

_ (82 +5)(22 + 3)

(=) = 2z 1 1)@= + )




Three contractions Fi, Fy, F3 : R' — R', Fj(xz) = i(x+p;), with fixed

points p; = 0, %, 1. The interval I=[0, 1] is a unique compact set such that

1= J B
7=1,2,3
The boundary of I is 81 = Vy = {0,1} and the discrete approrima-

tions toLare V, = |J F;(Vp—1) = {3%}2:0
j=1,2,3

Vo=0I : °

Vs

20



Definition. The discrete Dirichlet (energy) form on V, is
E(f) =) (Fw—f@)

z,YyEVn
y~z

and the Dirichlet (energy) form on I is E(f) = li_)m 3"EL(S) =
Jo 1§ (@) de

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition. 3&,11(f) > &€,.(f) and 3E,,11(h) = E,(h) = 37"E(h)
for a harmonic h.

Proposition. The Dirichlet (energy) form on I is self-similar in the sense that

E(f) =3) _ E&(foF))

ji=1,2,3

21



Definition. The discrete Laplacians on V,, are

Anf@) =3 Fo)—Ff@), zeVL\V

YyeEWVn
y~z

and the Laplacian on I is A f(z) = 1i_{n 9"A,f(z) = f'(z)

Gauss—Green (integration by parts) formula:

1 1
&) =~ | rardetsr],

Spectral asymptotics: Let p(A) be the eigenvalue counting function of
the Dirichlet or Neumann Laplacian A:

p(N) = #{3 : A < A}

p(A) 1

A—oo Nds/2 T
where ds = 1 is the spectral dimension.

Then

22



A )—8/2

Definition. The spectral zeta function is (a(s) = Z)\ 760(_ J
)

Its poles are the complex spectral dimensions.

Let R(z) be a polynomial of degree IN such that its Julia set Jgp C (—o0, 0],
R(0) =0and ¢c = R/(0) > 1.

Definition. The zeta function of R(z) for Re(s) > dp = 218N g

logc
C;](s) — 7}1_)1112 ‘(_an)fs/2 — ZAJ_S/Z
z€R™"{zo}
fi(s)

Theorem. (*(s) = - Nes/2 + £5°(8), where f1(s) and £5°(s) are ana-

lytic for Re(s)>0. If Jg is totally disconnected, then this meromorphic continuation
extends to Re(s)>—e, where £>0.

In the case of polynomials this theorem has been improved by Grabner et al.
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log N+4inm
logc

dp € the poles of C;O - {2
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Theorem. (a(s) = (7 (s) where R(z) = z(42°+122+9).
The Riemann zeta function {(s) satisfies {(s) = ﬂsC%(s) The only complex
spectral dimension is the pole at s = 1.

A sketch of the proof: If z# — %, —%, then
R(z) € 0(A,) < z € 0(Ant1)

and so Ca(s) = C;’%(s) since the eigenvalues A;j of A are limits of the eigenvalues
of 9" A,,.
Also A\j=—m%52 and so

o N8/2
ca(s) =Y (7%?) = 75¢(s)
j=1
where ¢(s) is the Riemann zeta function. Q.E.D.

— 513 _qn -S/2
¢(s) = =lim ) (-9"z)
zeRT {0}
z2#0
25



Definition. A, is pu—Laplacian if
1 1
ef) = [ 1F@Pde=— [ A fdu+ 11,
0 0

Definition. A probability measure p is self-similar with weights my, ms, ms

ifu= >, m;ucF;.
§j=1,2,3

Proposition. uf(m)_—_ lim (1+1)nAnf(m).

An iﬂ _ pf( )+qf(k+1) _f(gn)
/) { aF (50 + pF(EE) — (&)

ma _ ml
mitmz’ 9 mytmy’ and

where mi=mg, p=

ma mo ms

1 qp Pq 1

® hd L o hd hd hd A L o
P

1
at
3
st
Q4
a t
3
t
S
st
Q|
st
QY
at
s
st
Q|
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Spectral asymptotics: If p(\) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian A, then

0< hm 1nf p(N) < lim sup PN < oo
Ads/2 A—00 Ads/2
where the spectral dimension is
1
:L% < 1.
10g(1+ﬁ)

All the inequalities are strict if and only if p # gq.

Proposition. R(z) € 0(A,) < z € o(An+t1)
where z#—14p and R(z)=z(2%24+32+2+pq)/pq.
Note that R'(0)=1 + ., and d;=dp.

Theorem. CA“(S):C?{(S)



Three contractions Fy, F,, F3 : R? — R?
Fj(x) = 3(z+p;), with fixed points p1, pz, ps.

D2

D1 D3
The Sierpinski gasket is a unique compact set S such that
§= U Fj(9)

j=1,2,3
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Definition. The boundary of S is

98 = Vo = {p1,p2, p3}
and discrete approrimations to S are

Vo= U Fj(Vn—l)

Jj=12,3

Vo Vi: Vs




Definition. The discrete Dirichlet (energy) form on V, is
E(f) =) (Fw—f@)

z,YyEVn
y~z

and the Dirichlet (energy) form on S'is
£(f) = lim (2)"€.(F)

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition.  2&,.1(f) > En(f)
§8n+1(h):8n(h):(g) “"&(h) for a harmonic h.

Theorem (Kigami). € is a local regular Dirichlet form on S which is self-similar

in the sense that
Ef) =35 D E(foF))

ji=1,2,3
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Definition. The discrete Laplacians on V,, are

Anf@) =3 f)—Ff@), zeEVL\V

YEVR
y~

and the Laplacian on S'is
A,f(z) = lim 5"A, f(z)
n—oo

if this limit exists and A, f is continuous.

Gauss—Green (integration by parts) formula:

&) == [ SAfdu+ Y 10)0.50)

pedS
here p is the normalized Hausdorff measure, which is self-similar with weights

er
1
3?
> ek

j=1,2,3

w
1
37
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Spectral asymptotics: If p(\) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian A, then
p(A) . pP(A)

Nioyz < lmsup o

0< llm 1nf < oo

where the spectral dimension is

log 9
1<d, =% <2

Proposition. R(z) € 0(A,) <= z € 0(Apq1) where 2#£ — 1, -3, 2

and R(z) = z(5 + 4z).

Theorem (Fukushima, Shima). Every eigenvalue of A, has a form
A=5"1lim 5"R"(z)

n—oo

where R™™(zg) is a preimage of zy = —%, —Z under the n-th iteration power

of the polynomial R(z). The multiplicity of such an eigenvalue is C13™ + Cs.



the Sierpinski gasket is

)+ 3G (B
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Theorem. Zeta function of the Laplacian on
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Definition. If £ is a fractal string, that is, a disjoint collection of intervals of
lengths 1}, then its geometric zeta function is {c(s) = Zlf

Theorem (Lapidus). If A:—% is a Neumann or Dirichlet Laplacian on £,

then Ca(s) = m=5¢(s)Ce(s).

Example: Cantor self-similar fractal string.

(e BB ______§o§8 8§ §B§ §B§B NN §]
If £ is the complement of the middle third Cantor set in [0, 1], then the complex

: . log 2+2i
spectral dimensions are 1 and {W: n€”Z},

Ce(8) = 755780 Cals) = C(s)%
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Definition. A post critically finite (p.c.f.) self-similar set F' is a compact con-
nected metric space with a finite boundary @F C F' and contractive injections
;1 F — F such that k
F=9%(F) = |Jui(F)
and i=1
Po(F) [ %w(F) C 9o (9F) () 1w (dF),

for any two different words v and w of the same length. Here for a finite word
w € {1,...,k}"™ we define Yy = Py, 0 ... 0 WPy,

We assume that OF is a minimal such subset of F'. We call 4,,(F") an m-cell.
The p.c.f. assumption is that every boundary point is contained
in a single 1-cell.

Theorem (Kigami, Lapidus). The spectral dimension of the Laplacian A, is
the unique solution of the equation

k
> = 1
i=1



Conjecture. On every p.c.f. fractal F there exists a local regular Dirichlet form €
which gives positive capacity to the boundary points and is self-similar in the sense
that

k
E(f) =D pi€(for)

=1
for a set of positive refinement weights p = {p; }¥_,.

Definition. The group G of acts on a finitely ramified fractal F' if each g € G is
a homeomorphism of F' such that g(V,,) = V,, forall n > 0.

Proposition. Suppose a group G of acts on a self-similar finitely ramified fractal
F and G restricted to Vj is the whole permutation group of V4. Then there exists
a unique, up to a constant, G-invariant self-similar resistance form & with equal
energy renormalization weights p; and

2
Eo(f, )= Y (Fl@) —fy)"
z,yeVy
Moreover, for any G-invariant self-similar measure v the Laplacian A, has the

spectral self-similarity property (a.k.a. spectral decimation).
37



end of the talk :-)

Thank you!

Sasha Teplyaev (UConn)

NON-LINEAR EQUATIONS ON FRACTALS
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