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A subset Λ ⊂ Rd is a Delone set if it is uniformly discrete:

∃ε > 0 : |~x − ~y | > ε ∀~x, ~y ∈ Λ

and relatively dense:

∃R > 0 : Λ ∩ BR(~x) 6= ∅ ∀~x ∈ Rd .

A Delone set has finite local complexity if ∀R > 0∃ finitely many clusters
P1, . . . ,PnR

such that for any ~x ∈ Rd there is an i such that the set BR(~x) ∩ Λ
is translation-equivalent to Pi .

A Delone set Λ is aperiodic if Λ− ~t = Λ implies ~t = ~0. It is repetitive if for
any cluster P ⊂ Λ there exists RP > 0 such that for any ~x ∈ Rd the cluster
BRP (~x) ∩ Λ contains a cluster which is translation-equivalent to P.

These sets have applications in crystallography (≈ 1920), coding theory,
approximation algorithms, and the theory of quasicrystals.
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Electron diffraction picture of a Zn-Mg-Ho quasicrystal

Aperiodic tilings were discovered by mathematicians in the early 1960s, and, some
twenty years later, they were found to apply to the study of natural quasicrystals
(1982 Dan Shechtman, 2011 Nobel Prize in Chemistry).
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Penrose tiling
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pattern space of a Delone set

Let Λ0 ⊂ Rd be a Delone set. The pattern space (hull) of Λ0 is the closure of
the set of translates of Λ0 with respect to the metric %, i.e.

ΩΛ0 =
{
ϕ~t (Λ0) : ~t ∈ Rd

}
.

Definition

Let Λ0 ⊂ Rd be a Delone set and denote by ϕ~t (Λ0) = Λ0 − ~t its translation by
the vector ~t ∈ Rd . For any two translates Λ1 and Λ2 of Λ0 define %(Λ1,Λ2) =

inf{ε > 0 : ∃ ~s, ~t ∈ Bε(~0) : B 1
ε

(~0) ∩ ϕ~s(Λ1) = B 1
ε

(~0) ∩ ϕ~t(Λ2)} ∧ 2−1/2

Assumption

The action of Rd on Ω is uniquely ergodic:
Ω is a compact metric space with the unique Rd -invariant probability measure µ.
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Topological solenoids
(similar topological features as the pattern space Ω):
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Theorem (P.Alonso-Ruiz, M.Hinz, T., R.Treviño, arXiv:1801.08956)

(i) If ~W = ( ~Wt)t≥0 is the standard Gaussian Brownian motion on Rd , then for

any Λ ∈ Ω the process XΛ
t := ϕ ~Wt

(Λ) = Λ− ~Wt is a conservative Feller
diffusion on (Ω, %).

(ii) The semigroup Ptf (Λ) = E[f (XΛ
t )] is

self-adjoint on L2
µ, Feller but not strong Feller.

Its associated Dirichlet form is regular, strongly local, irreducible, recurrent,
and has Kusuoka-Hino dimension d .

(iii) The semigroup (Pt)t>0 does not admit heat kernels with
respect to µ. It does have Gaussian heat kernel with respect to the
not-σ-finite (no Radon-Nykodim theorem) pushforward measure λd

Ω

pΩ(t,Λ1,Λ2) =

 pRd (t, h−1
Λ1

(Λ2)) if Λ2 ∈ orb(Λ1),

0 otherwise.
(1)

(iv) There are no semi-bounded or L1 harmonic functions
(”Liouville-type”).
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no classical inequalities

Useful versions of the Poincare, Nash, Sobolev, Harnack
inequalities DO NOT HOLD, except in orbit-wise sense.
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spectral properties

Theorem (P.Alonso-Ruiz, M.Hinz, T., R.Treviño, arXiv:1801.08956)

The unitary Koopman operators U~t on L2(Ω, µ) defined by U~t f = f ◦ ϕ~t
commute with the heat semigroup

U~tPt = PtU~t

hence commute with the Laplacian ∆, and all spectral operators, such as the
unitary Schrödinger semigroup.

... hence we may have continuous spectrum (no eigenvalues) under some
assumptions even though µ is a probability measure on the compact set Ω.

Under special conditions Pt is connected to the evolution of a Phason:
“Phason is a quasiparticle existing in quasicrystals due to their specific,
quasiperiodic lattice structure. Similar to phonon, phason is associated with
atomic motion. However, whereas phonons are related to translation of atoms,
phasons are associated with atomic rearrangements. As a result of these
rearrangements, waves, describing the position of atoms in crystal, change phase,
thus the term “phason” (from the wikipedia)”.
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Phason evolution

Corollary (P.Alonso-Ruiz, M.Hinz, T., R.Treviño, arXiv:1801.08956)

The unitary Koopman operators U~t on L2(Ω, µ) defined by U~t f = f ◦ ϕ~t
commute with the heat semigroup

U~tPt = PtU~t

hence commute with the Laplacian ∆, and all spectral operators, including the
unitary Schrödinger semigroup e i∆t

U~te
i∆t = e i∆tU~t

Recent physics work on phason (“accounts for the freedom to choose the origin”):
Topological Properties of Quasiperiodic Tilings
(Yaroslav Don, Dor Gitelman, Eli Levy and Eric Akkermans
Technion Department of Physics)
https://phsites.technion.ac.il/eric/talks/

J. Bellissard, A. Bovier, and J.-M. Chez, Rev. Math. Phys. 04, 1 (1992).
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TopologicalPropertiesofQuasiperiodicTilings
Yaroslav Don, Eli Levy and Eric AkkermansDepartment of Physics, Technion – Israel Institute of Technology, Haifa, Israel

Abstract
Topological properties of finite quasiperiodic tilings are examined. We study two spe-
cific physical quantities: (a) the structure factor related to the Fourier transform of the
structure; (b) spectral properties (using scattering matrix formalism) of the correspond-
ing quasiperiodic Hamiltonian. We show that both quantities involve a phase, whose
windings describe topological numbers. We link these two phases, thus establishing
a “Bloch theorem” for specific types of quasiperiodic tilings.

Contact Information
Email: yarosd@campus.technion.ac.il
This work was supported by the Israel Science Foundation Grant No. 924/09.
We thank C. Schochet for useful discussions.

Substitution Rules – 1D Tilings
Define a binary substitution rule by

σ (a) = aαbβ
σ (b) = aγbδ ⇐⇒ a 7→ aαbβ

b 7→ aγbδ .
Associate occurrence matrix: M = ( α βγ δ

) Consider only primitive matrices:
• Largest eigenvalue λ1 > 1 (Perron-Frobenius)
• Left and right first eigenvectors are strictly positive

Distribution of letters underlies distribution of atoms:
x0• a x1• b x2• b x3• a x4• b x5• a x6• b x7• . . .

Define atomic density
ρ (x) =∑k δ (x − xk ) ,

with distances for a and b given by δk = xk+1 − xk = da,b.
Let d̄ be the mean distance and uk the deviations from the mean. Define

xk = d̄ k + δ uk , δ ≡ da − db.
Let g (ξ) = ∑

k e−iξxk be the diffraction pattern, and S (ξ) = |g (ξ)|2 the structure
factor. Using ξ0 = 2π/d̄, the Bragg peaks are located at [1]

ξm,N = mλ−N1 ξ0, m,N ∈ Z.
We consider the following families:
Pisot. The second eigenvalue |λ2|<1.
Non-Pisot. The second eigenvalue |λ2| ≥ 1.

Fluctuations uk are unbounded [2]; there are no Bragg peaks [3].
Examine the following examples:
Fibonacci. a 7→ ab , b 7→ a. It is Pisot, M = ( 1 11 0

), λ1 = (√5 + 1)/2 ≡ τ the golden
ratio and λ2 = −τ−1. Bragg peaks are located at ξp,q = (p+ q/τ) ξ0.
In C&P language, s = 1/τ and

ξp,q/ξ0 = p+ qs p, q ∈ Z.
Thue-Morse. a 7→ ab , b 7→ ba. Here it is Pisot, M = ( 1 11 1

),
λ1 = 2 and λ2 = 0. Bragg peaks: ξm,N = m 2−N ξ0, m,N ∈ Z.

Spectral Properties of Tilings
Consider a 1D tight-binding equation,
− (ψk+1 + ψk−1) + Vkψk = 2Eψk .

The gaps in the integrated density of
states are given by the gap labeling
theorem [4],
Nm,N = 1

cmλ−N1 (mod 1), m,N ∈ Z.
Here, c is the gcd of λ1 and its corre-
sponding eigenvectors in both M and
the collared M2.
In C&P sequences,
Np,q = p+ qs (mod 1) p, q ∈ Z.

Structural Phase – Phason as a Gauge Field
Another way to define a tiling is by using a characteristic function. We consider the
following choice [5, 6]:

χ (n, φ) = sign [cos (2πn s+ φ)− cos (π s)] .
with s→ sN = cN/dN the slope of the C&P scheme, and n = 0 . . . dN − 1.
The phase φ, called a phason, accounts for the gauge freedom to choose the origin. It
is taken discretely as φ→ φ` = 2π`/dN .
Let s0 (n) = χ (n, 0). Let T [s0 (n)] = s0 (n+ 1) be the translation operator. Define

Σ0 =



s0T [s0]· · ·
T dN−1 [s0]


 =⇒ Σ0 (n, `) = T ` [s0 (n)] .

Consider now the row permuted Σ1

Σ1 (n, `) = T m(`) [s0 (n)] , m (`) = ` c−1N (mod dN ).
Lemma. For φ` = 2π`/dN with n, ` = 0 . . . dN − 1 one has χ (n, φ` ) = Σ1 (n, `).

This defines a discrete phason φ` for the structure.
The structure of Σ1 (dN × dN ) is that of a torus:

=⇒

The discrete Fourier transform of Σ1 about n reads
G (ξ, `) ≡∑dN−1

n=0 ω−ξn Σ1 (n, `) = ωm(`)ξ ς0 (ξ) .
• The structure factor S (ξ, φ) = |ς0 (ξ)|2 is φ-independent.
• The phase of G (ξ, `) reads

Θ (ξ, `) ≡ argωm(`)ξ = φ` ξ/cN (mod 2π).
Corollary. For any diffraction peak (discrete Bragg peak) ξp,q = qcN one has the

(discrete) winding number at ξp,q,
Θ (ξp,q) = 2π

dN ` q,
hence

Wξp,q = 1
2π
∫ 2π

0
∂Θ (ξ = ξp,q, φ)

∂φ dφ = q.

Here we used the Fibonacci sequence (s = 1/τ) with dN = 89 sites. The winding
numbers are indicated by the red numbers above.
Remark. The analysis above for the winding numbers is done for rational approxima-

tions sN = cN/dN . It holds by construction for the irrational case sN → s.

Spectral Phase: Scattering Matrix Approach
Spectral properties are also accessible from the continuous wave equation,

−ψ ′′ (x)− k20 v (x)ψ (x) = k20 ψ (x) ,
with scattering boundary conditions.

The scattering S-matrix is defined by ( −→o←−o
) = ( −→r (k) t(k)

t(k) ←−r (k)
)( −→ı←−ı

) ≡ S( −→ı←−ı
), with

−→r = −→R ei−→θ and ←−r = −→R ei←−θ . It is unitary and can be diagonalized to S 7→ (
eiγ1 00 eiγ2

)
so that detS = e2iδ(k) with the total phase shift δ (k) = (γ1 (k) + γ2 (k)) /2 independent
of φ. We are interested in the chiral phase,

α (k, φ) = −→θ (k, φ)−←−θ (k, φ) .
Using the Krein-Schwinger formula [7] allows to relate the change of density of states
to the scattering data,

ρ (k)− ρ0 (k) = 1
2π Im d

dk ln detS (k) .
So that the integrated density of states is

N (k)−N0 (k) = δ (k) /π.
The total phase shift δ (k) is independent of the phason φ unlike the chiral phase
α (k, φ), whose winding for values of k inside the gaps is given by [8],

Wαg = 1
2π
∫ 2π

0
∂α (k = kp,q, φ)

∂φ dφ = 2q.

Here we used the Fibonacci sequence (s = 1/τ) with dN = 233 sites.

Relation between both Phases: a “Bloch Theorem”
In 1D C&P structures, The locations of Bragg peaks for a diffraction spectrum corre-
spond to the spectral density of states,

ξp,q/dN = p+ qs = Np,q p, q ∈ Z.
Drawing the integrated density of states N (red line) on top the structural phase
Θ (ξ, φ), shows numerically the relation between ξp,q and Np,q.

Both ξp,q and Np,q are isomorphic to Z⊕ sZ. The second Z, corresponding to q, can
be derived independently from the windings of both the structural phase Θ (φ) and the
chiral phase α (φ). Since these phases account for windings, they are isomorphic

Θ (φ) ∼= α (φ).
The winding gives a topological interpretation to these phases. This result can be
viewed as a Bloch theorem for quasiperiodic tilings [9].

Cut and Project Scheme
An alternative method to build quasiperiodic tilings is the Cut & Project scheme. The
procedure is as follows [10].
Cut.

1. Start with an n-dimensional space R = Rn.
2. Insert “atoms” on the integer lattice Z = Zn.
3. Divide R into the physical space E and the internal space E⊥ such that E ⊕
E⊥ = R and E ∩ E⊥ = ∅.

4. To resolve ambiguity for E, choose an initial location c ∈ R such that E passes
through c. There is no such requirement for E⊥.

Project.
1. Inspect the hypercube In = [−0.5, 0.5)n.
2. The window is its projection on the internal space W = π⊥ (In).
3. The strip is the product with the physical space S = W ⊗ E.
4. Choose only the points inside the strip S∩Z , and project them onto the physical

space, Y = π (S ∩ Z ).
5. The atomic density is given by ρ (x) ≡ ρc (x) = ∑

y∈Y δ (x − y) with x ∈ E.
Note the implicit dependency of Y on c.

For 1D systems, define the phason
φ = 2π b/W b ∈ E⊥,

where W is the window above.
The slope s is given by

1/s = 1 + cotβ.

Useful Tools
In periodic structures, topological numbers are described as Chern numbers. This does
not happen in quasiperiodic tilings, since there exists no notion of a Brillouin zone.
But alternative tools exist to describe topological properties of quasiperiodic tilings.
We now enumerate some of them.
• Tiling space T (dependent on λ1 or s) and its hull ΩT .
• Čech cohomology Ȟ1 (ΩT ), simplicial cohomology H1 (Γn)and Bratteli graphs [11, 12].
• K -theory, K0 (ΩT ) group and the abstract gap labeling theorem [4, 13].
• The Bloch theorem described before can be given an interpolation for 1D C&P

tilings (for an irrational slope s /∈ Q) by means of the “commutative diagram”:

Θ (φ)
OO

!∼= // α (φ)
OO

Z2 ∼= Ȟ1 (ΩC&P)
Cµ(s)
��

ψ // K0 (ΩC&P) ∼= Z⊕ Z

τ∗
��

Z⊕ sZ ∼= // Z⊕ sZ
The topological features are contained in Ȟ1 or K0 groups.

Conclusions
• We have defined two types of phases—a structural and spectral one—whose

windings unveil topological features of quasiperiodic tilings.
• We found a relation between these two phases, which can be interpreted as a

Bloch-like theorem.
• We have considered here a subset of tilings, which are known as Sturmian

(C&P) words. Our results can be extended to a broader families of tilings in one
dimension, and to tiles in higher dimensions (D > 1).

• All these features have been observed experimentally [5, 6].
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Helmholtz, Hodge and de Rham

Theorem

Assume d = 1. Then the space L2(Ω, µ,R1) admits the orthogonal
decomposition

L2(Ω, µ,R1) = Im∇⊕ R(dx). (2)

In other words, the L2-cohomology is 1-dimensional, which is surprising because
the de Rham cohomology is not one dimensional.
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