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A subset A C R? is a Delone set if it is uniformly discrete:

Je>0: [X—y]|>e VX, y €N

and relatively dense:

3R >0: AN BgR(X) #@ VX e R

A Delone set has finite local complexity if VR > 03 finitely many clusters
Py,..., P"R such that for any X € RY there is an i such that the set Br(X) N A
is translation-equivalent to P;.

A Delone set A is aperiodic if A — £ = A implies £ = 0. It is repetitive if for
any cluster P C A there exists Rp > 0 such that for any X € R the cluster
Bgr,(X) N A contains a cluster which is translation-equivalent to P.

These sets have applications in crystallography (= 1920), coding theory,
approximation algorithms, and the theory of quasicrystals.

Sasha Teplyaev (UConn) Spectral analysis on graphs and fractals - - iv July 11-12, 2022 2 /11



Electron diffraction picture of a Zn-Mg-Ho quasicrystal

Aperiodic tilings were discovered by mathematicians in the early 1960s, and, some
twenty years later, they were found to apply to the study of natural quasicrystals
(1982 Dan Shechtman, 2011 Nobel Prize in Chemistry).
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pattern space of a Delone set

Let Ag C RY be a Delone set. The pattern space (hull) of Ag is the closure of
the set of translates of Ay with respect to the metric g, i.e.

Q/\u = {cp;(/\o) : FE Rd}.

Definition

Let Ag C R9 be a Delone set and denote by @5 (Ag) = Mg — t its translation by
the vector £ € R?. For any two translates A and Ay of Ag define o(A1, A;) =
inf{e >0: 35,€ B.(0): B1(0) N ps(N1) = B1(0) N pz(A2)} A 27172

v

Assumption

The action of R on Q is uniquely ergodic:
Q is a compact metric space with the unique R9-invariant probability measure .
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Topological solenoids

(similar topological features as the pattern space Q):

CIRY-. = = 9ac
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Theorem (P.Alonso-Ruiz, M.Hinz, T., R.Trevifio, arXiv:1801.08956)

D IfW = V_I7t >0 is the standard Gaussian Brownian motion on R?, then for
(i) >

any N € Q the process X := e, (A) =N — W, is a conservative Feller
diffusion on (2, 0).

(i) The semigroup Pcf(N) = E[F(X])] is

self-adjoint on Li, Feller but not strong Feller.

Its associated Dirichlet form is regular, strongly local, irreducible, recurrent,
and has Kusuoka-Hino dimension d.

(iii) The semigroup (P:)¢>0 does not admit heat kernels with
respect to pi. It does have Gaussian heat kernel with respect to the
not-o-finite (no Radon-Nykodim theorem) pushforward measure )\Sd)

1 .
de(t h (/\2)) if Ny € orb(l\l)
pa(t, A1, \2) = T ’ (1)
0 otherwise.

(iv) There are no semi-bounded or L' harmonic functions
” . ll\
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no classical inequalities

Useful versions of the Poincare, Nash, Sobolev, Harnack
inequalities DO NOT HOLD, except in orbit-wise sense.
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spectral properties

Theorem (P.Alonso-Ruiz, M.Hinz, T., R.Trevifio, arXiv:1801.08956)

The unitary Koopman operators Uy on L?(R, u) defined by Uzf = f o o5
commute with the heat semigroup

U:P, = P,U;

hence commute with the Laplacian A, and all spectral operators, such as the
unitary Schrodinger semigroup.

... hence we may have continuous spectrum (no eigenvalues) under some
assumptions even though pu is a probability measure on the compact set €.

Under special conditions P; is connected to the evolution of a Phason:

“Phason is a quasiparticle existing in quasicrystals due to their specific,
quasiperiodic lattice structure. Similar to phonon, phason is associated with
atomic motion. However, whereas phonons are related to translation of atoms,
phasons are associated with atomic rearrangements. As a result of these
rearrangements, waves, describing the position of atoms in crystal, change phase,
thus the term

from the wikipedia
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https://en.wikipedia.org/wiki/Phason

Phason evolution

Corollary (P.Alonso-Ruiz, M.Hinz, T., R.Trevifio, arXiv:1801.08956)

The unitary Koopman operators Uy on L?(R, u) defined by Uzf = f o o5
commute with the heat semigroup

U:P, = P,U;

hence commute with the Laplacian A, and all spectral operators, including the
unitary Schrodinger semigroup e’At

Ui'e'At — e’AtUE’

v

Recent physics work on phason ( “accounts for the freedom to choose the origin”):
Topological Properties of Quasiperiodic Tilings

(Yaroslav Don, Dor Gitelman, Eli Levy and Eric Akkermans

Technion Department of Physics)
https://phsites.technion.ac.il/eric/talks/

J. Bellissard, A. Bovier, and J.-M. Chez, Rev. Math. Phys. 04, 1 (1992).
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Helmholtz, Hodge and de Rham

Theorem

Assume d = 1. Then the space L?(R, 1, R') admits the orthogonal
decomposition
L2(Q, u, R') = Im V @ R(dx). (2)

In other words, the Lz—cohomology is 1-dimensional, which is surprising because
the de Rham cohomology is not one dimensional.
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