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Preface

The basic model for the diffusion of heat is uses the idea that heat

spreads randomly in all directions at some rate. The heat equation

is a deterministic (non-random), partial differential equation derived

from this intuition by averaging over the very large number of par-

ticles. This equation can and has traditionally been studied as a

deterministic equation. While much can be said from this perspec-

tive, one also loses much of the intutition that can be obtained by

considering the individual random particles.

The idea in these notes is to introduce the heat equation and

the closely related notion of harmonic functions from a probabilistic

perspective. Our starting point is the random walk which in con-

tinuous time and space becomes Brownian motion. We then derive

equations to understand the random walk. This follows the modern

approach where one tries to use both probabilistic and (deterministic)

analytical methods to analyze diffusion.

Besides the random/deterministic dichotomy, another difference

in approach comes from choosing between discrete and continuous

models. The first chapter of this book starts with discrete random

walk and then uses it to define harmonic functions and the heat equa-

tions in the discrete set-up. Here one sees that linear functions arise,

and the deterministic questions yield problems in linear algebra. In
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2 Preface

particular, solutions of the heat equation can be found using diago-

nalization of symmetric matrices.

The next chapter goes to continuous time and continuous space.

We start with the Brownian motion which is the limit of random walk.

This is a fascinating object in itself and it takes a little work to show

that it exists. We have separated the treatment into Sections 2.1

and 2.6. The idea is that the latter section does not need to be read

in order to appreciate the rest of the chapter. The traditional heat

equation and Laplace equation are found by considering the Brownian

particles. Along the way, it is shown that the matrix diagonalization

of the previous chapter turns into a discussion of Fourier series.

The third chapter introduces a fundamental idea in probability,

martingales, that is closely related to harmonic functions. The view-

point here is probabilistic. The final chapter is an introduction to

fractal dimension. The goal, which is a bit ambitious, is to determine

the fractal dimension of the random Cantor set arising in Chapter 3.

This book is derived from lectures that I gave in the Research

Experiences for Undergraduates (REU) program at the University of

Chicago. The REU is a summer program in part or in full by about

eighty mathematics majors at the university. The students take a

number of mini-courses and do a research paper under supervision

of graduate students. Many of the students also serve as teaching

assistants for one of two other summer programs, one for bright high

school students and another designed for elementary and high school

teachers. The first two chapters in this book come from my mini-

courses in 2007 and 2008, and the last two chapters from my 2009

course.

The intended audience for these lectures was advanced undergrad-

uate mathematics majors who may be considering graduate work in

mathematics or a related area. The idea was to present probability

and analysis in a more advanced way than found in undergraduate

courses. I assume the students have had the equivalent of an advanced

calculus (rigorous one variable calculus) course and some exposure to

linear algebra. I do not assume that the students have had a course

in probability, but I present the basics quickly. I do not assume mea-

sure theory, but I introduce many of the important ideas along the
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way: Borel-Cantelli lemma, monotone and dominated convergence

theorems, Borel measure, conditional expectation. I also try to firm

up the students grasp of the advanced calculus along the way.

It is hoped that this book will be interesting to undergraduates,

especially those considering graduate studies, as well as to graduate

students and faculty whose specialty is not probability or analysis.

This book could be used for advanced seminars or for independent

reading. There are a number of exercises at the end of each section.

They vary in difficult and some of them are at the challenging level

that correspond to summer projects for undergraduates at the REU.

I would like to thank Marcelo Alvisio, Laurence Field, and Jacob

Perlman for their comments on a draft of this book. The author’s

research is supported by the National Science Foundation.





Chapter 1

Random Walk and
Discrete Heat Equation

1.1. Simple random walk

We consider one of the basic models for random walk, simple random

walk on the integer lattice Z
d. At each time step, a random walker

makes a random move of length one in one of the lattice directions.

1.1.1. One dimension. We start by studying simple random walk

on the integers. At each time unit, a walker flips a fair coin and moves

one step to the right or one step to the left depending on whether the

coin comes up heads or tails. Let Sn denote the position of the walker

at time n. If we assume that the walker starts at x, we can write

Sn = x+X1 + · · · +Xn

where Xj equals ±1 and represents the change in position between

time j − 1 and time j. More precisely, the increments X1, X2, . . . are

independent random variables with P{Xj = 1} = P{Xj = −1} = 1/2.

Suppose the walker starts at the origin (x = 0). Natural questions

to ask are:

• On the average, how far is the walker from the starting

point?

5



6 1. Random Walk and Discrete Heat Equation
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Figure 1. One dimensional random walk with x = 0

• What is the probability that at a particular time the walker

is at the origin?

• More generally, what is the probability distribution for the

position of the walker?

• Does the random walker keep returning to the origin or does

the walker eventually leave forever?

Probabilists use the notation E for expectation (also called ex-

pected value, mean, average value) defined for discrete random vari-

ables by

E[X ] =
∑

z

z P{X = z}.

The random walk satisfies E[Sn] = 0 since steps of +1 and −1 are

equally likely. To compute the average distance, one might try to
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compute E [|Sn|]. It turns out to be much easier to compute E[S2
n],

E[S2
n] = E











n
∑

j=1

Xj





2






= E





n
∑

j=1

n
∑

k=1

XjXk





=
n
∑

j=1

n
∑

k=1

E[XjXk] = n+
∑

j 6=k

E[XjXk].

♦ This calculation uses an important property of average values:

E[X + Y ] = E[X] + E[Y ].

The fact that the average of the sum is the sum of the averages for random

variables even if the random variables are dependent is easy to prove but can

be surprising. For example if one looks at the rolls of n regular 6-sided dice,

the expected value of the sum is (7/2) n whether one takes one die and uses

that number n times or rolls n different dice and adds the values. In the first

case the sum takes on the six possible values n, 2n, . . . , 6n with probability

1/6 each while in the second case the probability distribution for the sum is

hard to write down explicitly.

If j 6= k, there are four possibilities for the (Xj , Xk); for two

of them XjXk = 1 and for two of them XjXk = −1. Therefore,

E[XjXk] = 0 for j 6= k and

Var[Sn] = E[S2
n] = n.

Here Var denotes the variance of a random variable, defined by

Var[X ] = E
[

(X − EX)2
]

= E[X2] − (EX)
2

(a simple calculation establishes the second equality). Our calculation

illustrates an important fact about variances of sums: if X1, . . . , Xn

are independent, then

Var[X1 + · · · +Xn] = Var[X1] + · · · + Var[Xn].
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♦ The sum rule for expectation and the fact that the cross terms E[XjXk]

vanish make it much easier to compute averages of the square of a random

variable than other powers. In many ways, this is just an analogy of the

Pythagorean theorem from geometry: the property E[XjXk] = 0, which fol-

lows from the fact that the random variables are independent and have mean

zero, is the analogue of perpendicularity or orthogonality of vectors.

Finding the probability that the walker is at the origin after n

steps is harder than computing E[S2
n]. However, we can use our

computation to give a guess for the size of the probability. Since

E[S2
n] = n, the typical distance away from the origin is of order

√
n.

There are about
√
n integers whose distance is at most

√
n from the

starting point, so one might guess that the probability for being at

a particular one should decay like a constant times n−1/2. This is

indeed the case as we demonstrate by calculating the probability ex-

actly.

It is easy to see that after an odd number of steps the walker is

at an odd integer and after an even number of steps the walker is at

an even integer. Therefore, P{Sn = x} = 0 if n + x is odd. Let us

suppose the walker has taken an even number of steps, 2n. In order

for a walker to be back at the origin at time 2n, the walker must have

taken n “+1” steps and n “−1” steps. The number of ways to choose

which n steps are +1 is
(

2n
n

)

and each particular choice of 2n +1s and

−1s has probability 2−2n of occurring. Therefore,

P{S2n = 0} =

(

2n

n

)

2−2n =
(2n)!

n!n!
2−2n.

More generally, if the walker is to be at 2j, there must be (n + j)

steps of +1 and (n− j) steps of −1. The probabilities for the number

of +1 steps are given by the binomial distribution with parameters

2n and 1/2,

P{S2n = 2j} =

(

2n

n+ j

)

2−2n =
(2n)!

(n+ j)! (n− j)!
2−2n.

While these formulas are exact, it is not obvious how to use them be-

cause they contain ratios of very large numbers. Trying to understand
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the expression on the right hand side leads to studying the behavior

of n! as n gets large. This is the goal of the next section.

1.1.2. Stirling’s formula. Stirling’s formula states that as n→ ∞,

n! ∼
√

2π nn+ 1
2 e−n,

where ∼ means that the ratio of the two sides tends to 1. We will

prove this in the next two subsections. In this subsection we will

prove that there is a positive number C0 such that

(1.1) lim
n→∞

bn = C0, where bn =
n!

nn+ 1
2 e−n

,

and in Section 1.1.3 we show that C0 =
√

2π.

♦ Suppose an is a sequence of positive numbers going to infinity and
we want to find a positive function f(n) such that an/f(n) converges to a
positive constant L. Let bn = an/f(n). Then

bn = b1

n
Y

j=2

bj

bj−1
= b1

n
Y

j=2

[1 + δj ],

where

δj =
bj

bj−1
− 1,

and

lim
n→∞

log bn = log b1 + lim
n→∞

n
X

j=2

log[1 + δj ] = log b1 +

∞
X

j=2

log[1 + δj ],

provided that the sum converges. A necessary condition for convergence is that
δn → 0. The Taylor’s series for the logarithm shows that | log[1+ δn]| ≤ c |δn|
for |δn| ≤ 1/2, and hence a sufficient condition for uniform convergence of the
sum is that

∞
X

n=2

|δn| < ∞.

Although this argument proves that the limit exists, it does not determine the

value of the limit.

To start, it is easy to check that b1 = e and if n ≥ 2,

(1.2)
bn
bn−1

= e

(

n− 1

n

)n− 1
2

= e

(

1 − 1

n

)n (

1 − 1

n

)−1/2

.

Let δn = (bn/bn−1) − 1. We will show that
∑ |δn| <∞.
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♦ One of the most important tools for determining limits is Taylor’s
theorem with remainder, a version of which we now recall. Suppose f is a
Ck+1 function, i.e., a function with k+1 derivatives all of which are continuous
functions. Let Pk(x) denote the kth order Taylor series polynomial for f about
the origin. Then, for x > 0

|f(x) − Pk(x)| ≤ ak xk+1,

where

ak =
1

(k + 1)!
max

0≤t≤x
|f (k+1)(t)|.

A similar estimate is derived for negative x by considering f̃(x) = f(−x). The
Taylor series for the logarithm gives

log(1 + u) = u − u2

2
+

u3

3
− · · · ,

which is valid for |u| < 1. In fact, the Taylor series with remainder tells us that
for every positive integer k

(1.3) log(1 + u) = Pk(u) + O(|u|k+1),

where Pk(u) = u − (u2/2) + · · · + (−1)k+1(uk/k). The O(|u|k+1) denotes
a term that is bounded by a constant times |u|k+1 for small u. For example,
there is a constant ck such that for all |u| ≤ 1/2,

(1.4) | log(1 + u) − Pk(u)| ≤ ck |u|k+1.

We will use the O(·) notation as in (1.3) when doing asymptotics — in all

cases this will be shorthand for a more precise statement as in (1.4).

We will show that δn = O(n−2), i.e., there is a c such that

|δn| ≤
c

n2
.

To see this consider (1− 1
n )n which we know approaches e−1 as n gets

large. We use the Taylor series to estimate how fast it converges. We

write

log

(

1 − 1

n

)n

= n log

(

1 − 1

n

)

= n

[

− 1

n
− 1

2n2
+O(n−3)

]

= −1 − 1

2n
+O(n−2),
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and

log

(

1 − 1

n

)−1/2

=
1

2n
+O(n−2).

By taking logarithms in (1.2) and adding the terms we finish the proof

of (1.1). In fact (see Exercise 1.19) we can show that

(1.5) n! = C0 n
n+ 1

2 e−n
[

1 +O(n−1)
]

.

1.1.3. Central limit theorem. We now use Stirling’s formula to

estimate the probability that the random walker is at a certain posi-

tion. Let Sn be the position of a simple random walker on the integers

assuming S0 = 0. For every integer j, we have already seen that the

binomial distribution gives

P{S2n = 2j} =

(

2n

n+ j

)

2−2n =
2n!

(n+ j)!(n− j)!
2−2n.

Let us assume that |j| ≤ n/2. Then plugging into Stirling’s formula

and simplifying gives

(1.6) P{S2n = 2j} ∼
√

2

C0

(

1 − j2

n2

)−n (

1 +
j

n

)−j (

1 − j

n

)j (
n

n2 − j2

)1/2

.

In fact (if one uses (1.5)), there is a c such that the ratio of the two

sides is within distance c/n of 1 (we are assuming |j| ≤ n/2).

What does this look like as n tends to infinity? Let us first

consider the case j = 0. Then we get that

P{S2n = 0} ∼
√

2

C0 n1/2
.

We now consider j of order
√
n. Note that this confirms our previ-

ous heuristic argument that the probability should be like a constant

times n−1/2, since the typical distance is of order
√
n.

Since we expect S2n to be of order
√
n, let us write an integer j

as j = r
√
n. Then the right hand side of (1.6) becomes

√
2

C0
√
n

(

1 − r2

n

)−n
[

(

1 +
r√
n

)−√
n
]r
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×
[

(

1 − r√
n

)−√
n
]−r

(

1

1 − (r2/n)

)1/2

.

♦ We are about to use the well known limit
“

1 +
a

n

”n

−→ ea n → ∞.

In fact, using the Taylor’s series for the logarithm, we get for n ≥ 2a2,

log
“

1 +
a

n

”n

= a + O

„

a2

n

«

,

which can also be written as
“

1 +
a

n

”n

= ea ˆ

1 + O(a2/n)
˜

.

As n→ ∞, the right hand side of (1.6) is asymptotic to
√

2

C0
√
n
er2

e−r2

e−r2

=

√
2

C0
√
n
e−j2/n.

For every a < b,

(1.7) lim
n→∞

P{a
√

2n ≤ S2n ≤ b
√

2n} = lim
n→∞

∑

√
2

C0
√
n
e−j2/n,

where the sum is over all j with a
√

2n ≤ 2j ≤ b
√

2n. The right

hand side is the Riemann sum approximation of an integral where

the intervals in the sum have length
√

2/n. Hence the limit is

∫ b

a

1

C0
e−x2/2 dx.

This limiting distribution must be a probability distribution, so we

can see that
∫ ∞

−∞

1

C0
e−x2/2 dx = 1.

This gives the value C0 =
√

2π (see Exercise 1.21), and hence Stir-

ling’s formula can be written as

n! =
√

2π nn+ 1
2 e−n

[

1 +O(n−1)
]

.
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The limit in (1.7) is a statement of the central limit theorem (CLT)

for the random walk,

lim
n→∞

P{a
√

2n ≤ S2n ≤ b
√

2n} =

∫ b

a

1√
2π

e−x2/2 dx.

1.1.4. Returns to the origin.

♦ Recall that the sum
∞

X

n=1

n−a

converges if a > 1 and diverges otherwise.

We now consider the number of times that the random walker

returns to the origin. Let Jn = 1{Sn = 0}. Here we use the indicator

function notation: if E is an event, then 1E or 1(E) is the random

variable that takes the value 1 if the event occurs and 0 if it does not

occur. The total number of visits to the origin by the random walker

is

V =

∞
∑

n=0

J2n.

Note that

E[V ] =

∞
∑

n=0

E[J2n] =

∞
∑

n=0

P{S2n = 0}.

We know that P{S2n = 0} ∼ c/
√
n as n→ ∞. Therefore,

E[V ] = ∞.

It is possible, however, for a random variable to be finite yet have an

infinite expectation, so we need to do more work to prove that V is

actually infinite.

♦ A well known random variable with infinite expectation is that obtained
from the St. Petersburg’s Paradox. Suppose you play a game where you flip a
coin until you get a tails. If you get k heads before flipping the tails, then your
payoff is 2k. The probability that you get exactly k heads is the probability of
getting k consecutive heads followed by a tails which is 2k+1. Therefore, the
expected payoff in this game is

20 · 1

2
+ 21 · 1

22
+ 22 · 1

23
+ · · · =

1

2
+

1

2
+

1

2
+ · · · = ∞.
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Since the expectation is infinite, one should be willing to spend any amount of

money in order to play this game once. However, this is clearly not true and

here lies the paradox.

Let q be the probability that the random walker ever returns to

the origin after time 0. We will show that q = 1 by first assuming

q < 1 and deriving a contradiction. Suppose that q < 1. Then we can

give the distribution for V . For example, P{V = 1} = (1 − q) since

V = 1 if and only if the walker never returns after time zero. More

generally,

P{V = k} = qk−1 (1 − q), k = 1, 2, . . .

This tells us that

E[V ] =

∞
∑

k=1

k P{V = k} =

∞
∑

k=1

k qk−1 (1 − q) =
1

1 − q
<∞.

But we know that E[V ] = ∞. Hence it must be the case that q = 1.

We have established the following.

Theorem 1.1. The probability that a (one-dimensional) simple ran-

dom walker returns to the origin infinitely often is one.

Note that this also implies that if the random walker starts at

x 6= 0, then the probability that it will get to the origin is one.

♦ Another way to compute E[V ] in terms of q is to argue that

E[V ] = 1 + q E[V ].

The 1 represents the first visit; q is the probability of returning to the origin;

and the key observation is that the expected number of visits after the first

visit given that there is a second visit is exactly the expected number of visits

starting at the origin. Solving this simple equation gives E[V ] = (1 − q)−1.
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1.1.5. Several dimensions. We now consider a random walker on

the d-dimensional integer grid

Z
d = {(x1, . . . , xd) : xj integers} .

At each time step, the random walker chooses one of its 2d nearest

neighbors, each with probability 1/2d, and moves to that site. We

again let

Sn = x+X1 + · · · +Xn

denote the position of the particle. Here x,X1, . . . , Xn, Sn represent

points in Zd, i.e., they are d-dimensional vectors with integer compo-

nents. The increments X1, X2, . . . are unit vectors with one compo-

nent of absolute value 1. Note that Xj · Xj = 1 and if j 6= k, then

Xj ·Xk equals 1 with probability 1/(2d); equals −1 with probability

1/(2d); and otherwise equals zero. In particular, E[Xj ·Xj ] = 1 and

E[Xj · Xk] = 0 if j 6= k. Suppose S0 = 0. Then E[Sn] = 0, and a

calculation as in the one-dimensional case gives

E[|Sn|2] = E[Sn · Sn] = E









n
∑

j=1

Xj



 ·





n
∑

j=1

Xj







 = n.

o

Figure 2. The integer lattice Z
2
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What is the probability that we are at the origin after n steps

assuming S0 = 0? This is zero if n is odd. If n is even, let us give

a heuristic argument. The typical distance from the origin of Sn is

of order
√
n. In d dimensions the number of lattice points within

distance
√
n grows like (

√
n)d. Hence the probability that we choose

a particular point should decay like a constant times n−d/2.

The combinatorics for justifying this is a little more complicated

than in the one dimensional case so we will just wave our hands to

get the right behavior. In 2n steps, we expect that approximately

2n/d of them will be taken in each of the d possible directions (e.g.,

if d = 2 we expect about n horizontal and n vertical steps). In

order to be at the origin, we need to take an even number of steps

in each of the d-directions. The probability of this (Exercise 1.17) is

2−(d−1). Given that each of these numbers is even, the probability

that each individual component is at the origin is the probability

that a one dimensional walk is at the origin at time 2n/d (or, more

precisely, an even integer very close to 2n/d). Using this idea we get

the asymptotics

P{S2n = 0} ∼ cd
nd/2

, cd =
dd/2

πd/2 2d−1
.

The particular value of cd will not be important to us but the fact

that the exponent of n is d/2 is very important.

Consider the expected number of returns to the origin. If V is

the number of visits to the origin, then just as in the d = 1 case,

E[V ] =

∞
∑

n=0

P{S2n = 0}.

Also,

E[V ] =
1

1 − q
,

where q = qd is the probability that the d-dimensional walk returns

to the origin. Since P{S2n = 0} ∼ c/nd/2,

E[V ] =

∞
∑

n=0

P{S2n = 0} =

{

<∞, d ≥ 3

= ∞, d = 2
.

Theorem 1.2. Suppose Sn is simple random walk in Zd with S0 = 0.

If d = 1, 2, the random walk is recurrent, i.e., with probability one it
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returns to the origin infinitely often. If d ≥ 3, the random walk is

transient, i.e., with probability one it returns to the origin only finitely

often. Also,

P{Sn 6= 0 for all n > 0} > 0 if d ≥ 3.

1.1.6. Notes about probability. We have already implicitly used

some facts about probability. Let us be more explicit about some of

the rules of probability. A sample space or probability space is a set

Ω and events are a collection of subsets of Ω including ∅ and Ω. A

probability P is a function from events to [0, 1] satisfying P(Ω) = 1

and the following countable additivity rule:

• If E1, E2, . . . are disjoint (mutually exclusive) events, then

P

( ∞
⋃

n=1

En

)

=

∞
∑

n=1

P(En).

We do not assume that P is defined for every subset of Ω but we do

assume that the collection of events is closed under countable unions

and “complementation”, i.e., if E1, E2, . . . are events so are ∪Ej and

Ω \ Ej .

♦ The assumptions about probability are exactly the assumptions used

in measure theory to define a measure. We will not discuss the difficulties

involved in proving such a probability exists. In order to do many things in

probability rigorously, one needs to use the theory of Lebesgue integration. We

will not worry about this in this book.

We do want to discuss one important lemma that probabilists use

all the time. It is very easy but it has a name. (It is very common for

mathematicians to assign names to lemmas that are used frequently

even if they are very simple—this way one can refer to them easily.)

Lemma 1.3 (Borel-Cantelli Lemma). Suppose E1, E2, . . . is a collec-

tion of events such that
∞
∑

n=1

P(En) <∞.

Then with probability one at most finitely many of the events occur.
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Proof. Let A be the event that infinitely many of E1, E2, . . . occur.

For each integer N, A ⊂ AN where AN is the event that at least one

of the events EN , EN+1, . . . occurs. Then,

P(A) ≤ P(AN ) = P

( ∞
⋃

n=N

En

)

≤
∞
∑

n=N

P(En).

But
∑

P(En) <∞ implies

lim
N→∞

∞
∑

n=N

P(En) = 0.

Hence P(A) = 0. �

As an example, consider the simple random walk in Zd, d ≥ 3 and

let En be the event that Sn = 0. Then, the estimates of the previous

section show that ∞
∑

n=1

P(En) <∞,

and hence with probability one, only finitely many of the events En

occur. This says that with probability one, the random walk visits

the origin only finitely often.

1.2. Boundary value problems

1.2.1. One dimension: gambler’s ruin. Suppose N is a positive

integer and a random walker starts at x ∈ {0, 1, . . . , N}. Let Sn

denote the position of the walker at time n. Suppose the walker stops

when the walker reaches 0 or N . To be more precise, let

T = min {n : Sn = 0 or N} .
Then the position of the walker at time n is given by Ŝn = Sn∧T

where n ∧ T means the minimum of n and T . It is not hard to see

that with probability one T <∞, i.e., eventually the walker will reach

0 or N and then stop. Our goal is to try to figure out which point it

stops at. Define the function F : {0, . . . , N} → [0, 1] by

F (x) = P{ST = N | S0 = x}.
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♦ Recall that if V1, V2 are events, then P(V1 | V2) denotes the conditional
probability of V1 given V2. It is defined by

P(V1 | V2) =
P(V1 ∩ V2)

P(V2)
,

assuming P(V2) > 0.

We can give a gambling interpretation to this by viewing Sn as

the number of chips currently held by a gambler who is playing a

fair game where at each time duration the player wins or loses one

chip. The gambler starts with x chips and plays until he or she has

N chips or has gone bankrupt. The chance that the gambler does

not go bankrupt before attaining N is F (x). Clearly, F (0) = 0 and

F (N) = 1. Suppose 0 < x < N . After the first game, the gambler

has either x− 1 or x+ 1 chips, and each of these outcomes is equally

likely. Therefore,

(1.8) F (x) =
1

2
F (x+ 1) +

1

2
F (x− 1), x = 1, . . . , N − 1.

One function F that satisfies (1.8) with the boundary conditions

F (0) = 0, F (N) = 1 is the linear function F (x) = x/N . In fact,

this is the only solution as we show now see.

Theorem 1.4. Suppose a, b are real numbers and N is a positive

integer. Then the only function F : {0, . . . , N} → R satisfying (1.8)

with F (0) = a and F (N) = b is the linear function

F0(x) = a+
x(b − a)

N
.

This is a fairly easy theorem to prove. In fact, we will give several

proofs. This is not just to show off how many proofs we can give! It

is often useful to give different proofs to the same theorem because

it gives us a number of different approaches to trying to prove gen-

eralizations. It is immediate that F0 satisfies the conditions; the real

question is one of uniqueness. We must show that F0 is the only such

function.

Proof 1. Consider the set V of all functions F : {0, . . . , N} → R

that satisfy (1.8). It is easy to check that V is a vector space, i.e., if
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f, g ∈ V and c1, c2 are real numbers, then c1f + c2g ∈ V . In fact, we

claim that this vector space has dimension two. To see this, we will

give a basis. Let f1 be the function defined by f1(0) = 0, f1(1) = 1

and then extended in the unique way to satisfy (1.8). In other words,

we define f1(x) for x > 1 by

f1(x) = 2f1(x− 1) − f1(x− 2).

It is easy to see that f1 is the only solution to (1.8) satisfying f1(0) =

0, f1(1) = 1. We define f2 similarly with initial conditions f2(0) =

1, f2(1) = 0. Then c1f1+c2f2 is the unique solution to (1.8) satisfying

f1(0) = c2, f1(1) = c1. The set of functions of the form F0 as a, b vary

form a two dimensional subspace of V and hence must be all of V .

♦ The set of all functions f : {0, . . . , N} → R is essentially the same

as R
N+1. One can see this by associating to the function f the vector

(f(0), f(1), . . . , f(N)). The set V is a subspace of this vector space. Re-

call to show that a subspace has dimension k, it suffices to find a basis for the

subspace with k elements v1, . . . , vk. To show they form a basis, we need to

show that they are linearly independent and that every vector in the subspace

is a linear combination of them.

Proof 2. Suppose F is a solution to (1.8). Then for each 0 < x < N ,

F (x) ≤ max{F (x− 1), F (x+ 1)}.

Using this we can see that the maximum of F is obtained either

at 0 or at N . Similarly, the minimum of F is obtained on {0, N}.
Suppose F (0) = 0, F (N) = 0. Then the minimum and the maxi-

mum of the function are both 0 which means that F ≡ 0. Suppose

F (0) = a, F (N) = b and let F0 be the linear function with these same

boundary values. Then F − F0 satisfies (1.8) with boundary value 0,

and hence is identically zero. This implies that F = F0.

Proof 3. Consider the equations (1.8) as N − 1 linear equations in

N − 1 unknowns, F (1), . . . , F (N − 1). We can write this as

Av = w,
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where

A =





















−1 1
2 0 0 · · · 0 0

1
2 −1 1

2 0 · · · 0 0

0 1
2 −1 1

2 · · · 0 0
...

0 0 0 0 · · · −1 1
2

0 0 0 0 · · · 1
2 −1





















, w =





















−F (0)
2

0

0
...

0

−F (N)
2





















.

If we prove that A is invertible, then the unique solution is v = A−1w.

To prove invertibility it suffices to show that Av = 0 has a unique

solution and this can be done by an argument as in the previous proof.

Proof 4. Suppose F is a solution to (1.8). Let Sn be the random

walk starting at x. We claim that for all n, E[F (Sn∧T )] = F (x).

We will show this by induction. For n = 0, F (S0) = F (x) and

hence E[F (S0)] = F (x). To do the inductive step, we use a rule for

expectation in terms of conditional expectations:

E[F (S(n+1)∧T )] =
N
∑

y=0

P{Sn∧T = y}E[F (S(n+1)∧T ) | Sn∧T = y].

If y = 0 or y = N and Sn∧T = y, then S(n+1)∧T = y and hence

E[F (S(n+1)∧T ) | Sn∧T = y] = F (y). If 0 < y < x and Sn∧T = y, then

E[F (S(n+1)∧T ) | Sn∧T = y] =
1

2
F (y + 1) +

1

2
F (y − 1) = F (y).

Therefore,

E[F (S(n+1)∧T )] =

N
∑

y=0

P{Sn∧T = y}F (y) = E[F (Sn∧T )] = F (x),

with the last equality holding by the inductive hypothesis. Therefore,

F (x) = lim
n→∞

E[F (Sn∧T )]

= lim
n→∞

N
∑

y=0

P{Sn∧T = y}F (y)

= P{ST = 0}F (0) + P{ST = N}F (N)

= [1 − P{ST = N}]F (0) + P{ST = N}F (N).
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Considering the case F (0) = 0, F (N) = 1 gives P{ST = N | S0 =

x} = x/N and for more general boundary conditions,

F (x) = F (0) +
x

N
[F (N) − F (0)].

One nice thing about the last proof is that it was not necessary

to have already guessed the linear functions as solutions. The proof

produces these solutions.

1.2.2. Higher dimensions. We will generalize this result to higher

dimensions. We replace the interval {1, . . . , N} with an arbitrary

finite subset A of Zd. We let ∂A be the (outer) boundary of A defined

by

∂A = {z ∈ Z
d \A : dist(z,A) = 1},

and we let A = A ∪ ∂A be the “closure” of A.

Figure 3. The white dots are A and the black dots are ∂A

♦ The term closure may seem strange, but in the continuous analogue,

A will be an open set, ∂A its topological boundary and A = A ∪ ∂A its

topological closure.

We define the linear operators Q,L on functions by

QF (x) =
1

2d

∑

y∈Zd,|x−y|=1

F (y),

LF (x) = (Q − I)F (x) =
1

2d

∑

y∈Zd,|x−y|=1

[F (y) − F (x)]
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The operator L is often called the (discrete) Laplacian. We let Sn be

a simple random walk in Zd. Then we can write

LF (x) = E[F (S1) − F (S0) | S0 = x].

We say that F is (discrete) harmonic at x if LF (x) = 0; this is an

example of a mean-value property. The corresponding boundary value

problem we will state is sometimes called the Dirichlet problem for

harmonic functions.

♦ The term linear operator is often used for a linear function whose

domain is a space of functions. In our case, the domain is the space of functions

on the finite set A which is isomorphic to R
K where K = #(A). In this case a

linear operator is the same as a linear transformation from linear algebra. We

can think of Q and L as K × K matrices. We can write Q = [Q(x, y)]x,y∈A

where Q(x, y) = 1/(2d) if |x − y| = 1 and otherwise Q(x, y) = 0. Define

Qn(x, y) by Qn = [Qn(x, y)]. Then Qn(x, y) is the probability that the

random walk starts at x, is at site y at time n, and and has not left the set A

by time n.

Dirichlet problem for harmonic functions. Given a set A ⊂ Z
d

and a function F : ∂A→ R find an extension of F to A such that F

is harmonic in A, i.e.,

(1.9) LF (x) = 0 for all x ∈ A.

For the case d = 1 and A = {1, . . . , N −1}, we were able to guess

the solution and then verify that it is correct. In higher dimensions,

it is not so obvious how to give a formula for the solution. We will

show that the last proof for d = 1 generalizes in a natural way to

d > 1. We let TA = min{n ≥ 0 : Sn 6∈ A}.

Theorem 1.5. If A ⊂ Zd is finite, then for every F : ∂A→ R, there

is a unique extension of F to A that satisfies (1.9). It is given by

F0(x) = E[F (STA) | S0 = x] =
∑

y∈∂A

P{STA = y | S0 = x}F (y).
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It is not difficult to verify that F0 as defined above is a solution

to the Dirichlet problem. The problem is to show that it is unique.

Suppose F is harmonic on A; S0 = x ∈ A; and let

Mn = F (Sn∧TA).

Then (1.9) can be rewritten as

(1.10) E[Mn+1 | S0, . . . , Sn] = F (Sn∧TA) = Mn.

A process that satisfies E[Mn+1 | S0, . . . , Sn] = Mn is called a martin-

gale (with respect to the random walk). It is easy to see that F (Sn∧TA)

being a martingale is essentially equivalent to F being harmonic on

A. It is easy to check that martingales satisfy E[Mn] = E[M0], and

hence if S0 = x,
∑

y∈A

P{Sn∧TA = y}F (y) = E[Mn] = M0 = F (x).

An easy argument shows that with probability one TA <∞. We can

take limits and get

(1.11)

F (x) = lim
n→∞

∑

y∈A

P{Sn∧TA = y}F (y) =
∑

y∈∂A

P{STA = y}F (y).

♦ There is no problem interchanging the limit and the sum because it is a

finite sum. If A is infinite, one needs more assumptions to justify the exchange

of the limit and the sum.

Let us consider this from the perspective of linear algebra. Sup-

pose that A has N elements and ∂A has K elements. The solution

of the Dirichlet problem assigns to each function on ∂A (a vector in

RK) a function on A (a vector in RN ). Hence the solution can be

considered as a linear function from RK to RN (the reader should

check that this is a linear transformation). Any linear transformation

is given by an N×K matrix. Let us write the matrix for the solution

as

HA = [HA(x, y)]x∈A,y∈∂A.

Another way of stating (1.11) is to say that

HA(x, y) = P {STA = y | S0 = x} .
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This matrix is often called the Poisson kernel. For a given set A, we

can solve the Dirichlet problem for any boundary function in terms

of the Poisson kernel.

♦ Analysts who are not comfortable with probability1 think of the Poisson

kernel only as the matrix for the transformation which takes boundary data to

values on the interior. Probabilists also have the interpretation of HA(x, y) as

the probability that the random walk starting at x exits A at y.

What happens in Theorem 1.5 if we allow A to be an infinite

set? In this case it is not always true that the solution is unique.

Let us consider the one-dimensional example with A = {1, 2, 3, . . .}
and ∂A = {0}. Then for every c ∈ R, the function F (x) = cx is

harmonic in A with boundary value 0 at the origin. Where does

our proof break down? This depends on which proof we consider

(they all break down!), but let us consider the martingale version.

Suppose F is harmonic on A with F (0) = 0 and suppose Sn is a

simple random walk starting at positive integer x. As before, we let

T = min{n ≥ 0 : Sn = 0} and Mn = F (Sn∧T ). The same argument

shows that Mn is a martingale and

F (x) = E[Mn] =

∞
∑

y=0

F (y) P{Sn∧T = y}.

We have shown in a previous section that with probability one T <∞.

This implies that P{Sn∧T = 0} tends to 1, i.e.,

lim
n→∞

∑

y>0

P{Sn∧T = y} = 0.

However, if F is unbounded, we cannot conclude from this that

lim
n→∞

∑

y>0

F (y) P{Sn∧T = y} = 0.

However, we do see from this that there is only one bounded function

that is harmonic on A with a given boundary value at 0. We state

the theorem leaving the details as Exercise 1.7.

1The politically correct term is stochastically challenged.
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Theorem 1.6. Suppose A is a proper subset of Zd such that for all

x ∈ Zd,

lim
n→∞

P{TA > n | S0 = x} = 0.

Suppose F : ∂A → R is a bounded function. Then there is a unique

bounded extension of F to A that satisfies (1.9). It is given by

F0(x) = E[F (STA) | S0 = x] =
∑

y∈∂A

P{STA = y | S0 = x}F (y).

1.3. Heat equation

We will now introduce a mathematical model for heat flow. Let A be

a finite subset of Zd with boundary ∂A. We set the temperature at

the boundary to be zero at all times and as an initial condition set the

temperature at x ∈ A to be pn(x). At each integer time unit n, the

heat at x at time n is spread evenly among its 2d nearest neighbors. If

one of those neighbors is a boundary point, then the heat that goes to

that site is lost forever. A more probabilistic view of this is given by

imagining that the temperature in A to be controlled by a very large

number of “heat particles”. These particles perform random walks on

A until they leave A at which time they are killed. The temperature

at x at time n, pn(x) is given by the density of particles at x. Either

interpretation gives a difference equation for the temperature pn(x).

For x ∈ A, the temperature at x is given by the amount of heat going

in from neighboring sites,

pn+1(x) =
1

2d

∑

|y−x|=1

pn(y).

If we introduce the notation ∂npn(x) = pn+1(x) − pn(x), we get the

heat equation

(1.12) ∂npn(x) = Lpn(x), x ∈ A,

where L denotes the discrete Laplacian as before. The initial temper-

ature is given as an initial condition

(1.13) p0(x) = f(x), x ∈ A.

We rewrite the boundary condition

(1.14) pn(x) = 0, x ∈ ∂A.
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If x ∈ A and the initial condition is f(x) = 1 and f(z) = 0 for z 6= x,

then

pn(y) = P{Sn∧TA = y | S0 = x}.

♦ The heat equation is a deterministic (i.e., without randomness) model

for heat flow. It can be studied without probability. However, probability adds

a layer of richness in terms of movements of individual random particles. This

extra view is often useful for understanding the equation.

Given any initial condition f , it is easy to see that there is

a unique function pn satisfying (1.12)–(1.14). Indeed, we just set:

pn(y) = 0 for all n ≥ 0 if y ∈ ∂A; p0(x) = f(x) if x ∈ A; and for

n > 0, we define pn(x), x ∈ A recursively by (1.12). This tells us

that set of functions satisfying (1.12) and (1.14) is a vector space of

dimension #(A). In fact, {pn(x) : x ∈ A} is the vector Qnf .

Once we have existence and uniqueness, the problem remains to

find the function. For a bounded set A, this is a problem in lin-

ear algebra and essentially becomes the question of diagonalizing the

matrix Q.

♦ Recall from linear algebra that if A is a k × k symmetric matrix with
real entries, then we can find k (not necessarily distinct) real eigenvalues

λk ≤ λk−1 ≤ · · · ≤ λ1,

and k orthogonal vectors v1, . . . ,vk that are eigenvectors,

Avj = λj vj .

(If A is not symmetric, A might not have k linearly independent eigenvectors,

some eigenvalues might not be real, and eigenvectors for different eigenvalues

are not necessarily orthogonal.)

We will start by considering the case d = 1. Let us compute the

function pn for A = {1, . . . , N −1}. We start by looking for functions

satisfying (1.12) of the form

(1.15) pn(x) = λn φ(x).

If pn is of this form, then

∂npn(x) = λn+1 φ(x) − λn φ(x) = (λ− 1)λn φ(x).
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This nice form leads us to try to find eigenvalues and eigenfunctions

of Q, i.e., to find λ, φ such that

(1.16) Qφ(x) = λφ(x),

with φ ≡ 0 on ∂A.

♦ The “algorithmic” way to find the eigenvalues and eigenvectors for

a matrix Q is first to find the eigenvalues as the roots of the characteristic

polynomial and then to find the corresponding eigenvector for each eigenvalue.

Sometimes we can avoid this if we can make good guesses for the eigenvectors.

This is what we will do here.

The sum rule for sine,

sin((x± 1)θ) = sin(xθ) cos(θ) ± cos(xθ) sin(θ),

tells us that

Q{sin(θx)} = λθ {sin(θx)}, λθ = cos θ,

where {sin(θx)} denotes the vector whose component associated to

x ∈ A is sin(θx). If we choose θj = πj/N , then φj(x) = sin(πjx/N)

which satisfies the boundary condition φj(0) = φj(N) = 0. Since

these are eigenvectors with different eigenvalues for a symmetric ma-

trix Q, we know that they are orthogonal, and hence linearly inde-

pendent. Hence every function f on A can be written in a unique

way as

(1.17) f(x) =

N−1
∑

j=1

cj sin

(

πjx

N

)

.

This sum in terms of trigonometric functions is called a finite Fourier

series. The solution to the heat equation with initial condition f is

pn(y) =
N−1
∑

j=1

cj

[

cos

(

jπ

N

)]n

φj(y).

Orthogonality of eigenvectors tells us that

N−1
∑

x=1

sin

(

πjx

N

)

sin

(

πkx

N

)

= 0 if j 6= k.



1.3. Heat equation 29

Also,

(1.18)
N−1
∑

x=1

sin2

(

πjx

N

)

=
N

2
.

♦ The Nth roots of unity, ζ1, . . . , ζN are the N complex numbers ζ such
that ζN = 1. They are given by

ζk = cos

„

2kπ

N

«

+ i sin

„

2kπ

N

«

, j = 1, . . . , N.

The roots of unity are spread evenly about the unit circle in C; in particular,

ω1 + ω2 + · · · + ωN = 0,

which implies that

N
X

j=1

cos

„

2kπ

N

«

=

N
X

j=1

sin

„

2kπ

N

«

= 0.

The double angle formula for sine gives

N−1
X

j=1

sin2

„

jxπ

N

«

=
N

X

j=1

sin2

„

jxπ

N

«

=
1

2

N−1
X

j=0

»

1 − cos

„

2jxπ

N

«–

=
N

2
− 1

2

N
X

j=1

cos

„

2jxπ

N

«

.

If x is an integer, the last sum is zero. This gives (1.18).

In particular, if we choose the solution with initial condition

f(x) = 1; f(z) = 0, z 6= x we can see that

P{Sn∧TA = y | S0 = x} =
2

N

N−1
∑

j=1

φj(x)

[

cos

(

jπ

N

)]n

φj(y).

It is interesting to see what happens as n→ ∞. For large n, the

sum is very small but it is dominated by the j = 1 and j = N − 1

terms for which the eigenvalue has maximal absolute value. These

two terms give

2

N
cosn

( π

N

) [

sin
(πx

N

)

sin
(πy

N

)

+
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(−1)n sin

(

xπ(N − 1)

N

)

sin

(

yπ(N − 1)

N

)]

.

One can check that

sin

(

xπ(N − 1)

N

)

= (−1)x+1 sin
(πx

N

)

,

and hence if x, y ∈ {1, . . . , N − 1}, as n→ ∞,

P{Sn∧TA = y | S0 = x} ∼
2

N
cosn

( π

N

)

[1 + (−1)n+x+y] sin
(πx

N

)

sin
(πy

N

)

.

For large n, conditioned that the walker has not left {1, . . . , N − 1},
the probability that the walker is at y is about c sin(πy/N) assuming

that the “parity” is correct (n + x + y is even). Other than the

parity, there is no dependence on the starting point x for the limiting

distribution. Note that the walker is more likely to be at points

toward the “middle” of the interval.

The above example illustrates a technique for finding solutions of

the form (1.15) called separation of variables. The same idea works for

all d although it may not always be possible to give nice expressions

for the eigenvalues and eigenvectors. For finite A this is essentially

the same as computing powers of a matrix by diagonalization. We

summarize here.

Theorem 1.7. If A is a finite subset of Zd with N elements, then

we can find N linearly independent functions φ1, . . . , φN that satisfy

(1.16) with real eigenvalues λ1, . . . , λN . The solution to (1.12)–(1.14)

is given by

pn(x) =

N
∑

j=1

cj λ
n
j φj(x),

where cj are chosen so that

f(x) =

N
∑

j=1

cj φj(x).

In fact, the φj can be chosen to be orthonormal,

〈φj , φk〉 :=
∑

x∈A

φj(x)φk(x) = δ(k − j).
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♦ Here we have introduced the delta function notation, δ(z) = 1 if z = 0

and δ(z) = 0 if z 6= 0.

Since pn(x) → 0 as n → ∞, we know that the eigenvalues have

absolute value strictly less than one. We can order the eigenvalues

1 > λ1 ≥ λ2 ≥ · · · ≥ λN > −1.

We will write p(x, y;A) to be the solution of the heat equation with

initial condition equal to one at x and 0 otherwise. In other words,

pn(x, y;A) = P{Sn = y, TA > n | S0 = x}, x, y ∈ A.

Then if #(A) = N ,

pn(x, y;A) =
N
∑

j=1

cj(x)λ
n
j φj(y)

where cj(x) have been chosen so that

N
∑

j=1

cj(x)φj(y) = δ(y − x).

In fact, this tells us that cj(x) = φj(x). Hence

pn(x, y;A) =
N
∑

j=1

λn
j φj(x)φj(y).

Note that the quantity on the right is symmetric in x, y. One can

check that the symmetry also follows from the definition of pn(x, y;A).

The largest eigenvalue λ1 is often denoted λA. We can give a

“variational” definition of λA as follows. This is really just a theorem

about the largest eigenvalue of symmetric matrices.

Theorem 1.8. If A is a finite subset of Zd, then λA is given by

λA = sup
f

〈Qf, f〉
〈f, f〉 ,

where the supremum is over all functions f on A, and 〈·, ·〉 denotes

inner product

〈f, g〉 =
∑

x∈A

f(x) g(x).
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Proof. If φ is an eigenvector with eigenvalue λ1, then Qφ = λ1φ and

setting f = φ shows that the supremum is at least as large as λ1.

Conversely, there is an orthogonal basis of eigenfunctions φ1, . . . , φN

and we can write any f as

f =

N
∑

j=1

cj φj .

Then

〈Qf, f〉 =

〈

Q

N
∑

j=1

cj φj ,

N
∑

j=1

cj φj

〉

=

〈

N
∑

j=1

cjQφj ,

N
∑

j=1

cj φj

〉

=
∑

j=1

c2j λj 〈φj , φj〉

≤ λ1

∑

j=1

c2j 〈φj , φj〉 = λ1 〈f, f〉.

The reader should check that the computation above uses the orthog-

onality of the eigenfunctions and also the fact that 〈φj , φj〉 ≥ 0. �

Using this variational formulation, we can see that the eigenfunc-

tion for λ1 can be chosen so that φ1(x) ≥ 0 for each x (since if φ1 took

on both positive and negative values, we would have 〈Q|φ1|, |φ1|〉 >
〈φ1, φ1〉). The eigenfunction is unique, i.e., λ2 < λ1, provided we

put an additional condition on A. We say that a subset A on Z
d is

connected if any two points in A are connected by a nearest neighbor

path that stays entirely in A. Equivalently, A is connected if for each

x, y ∈ A there exists an n such that pn(x, y;A) > 0. We leave it as

Exercise 1.23 to show that this implies that λ1 > λ2.

Before stating the final theorem, we need to discuss some par-

ity (even/odd) issues. If x = (x1, . . . , xd) ∈ Zd we let par(x) =

(−1)x1+···+xd . We call x even if par(x) = 1 and otherwise x is odd.

If n is a nonnegative integer, then

pn(x, y;A) = 0 if (−1)npar(x+ y) = −1.

If Qφ = λφ, then Q[parφ] = −λparφ.
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Theorem 1.9. Suppose A is a finite connected subset of Zd with at

least two points. Then λ1 > λ2, λN = −λ1 < λN−1. The eigenfunc-

tion φ1 can be chosen so that φ1(x) > 0 for all x ∈ A.

lim
n→∞

λ−n
1 pn(x, y;A) = [1 + (−1)n par(x+ y)]φ1(x)φ1(y).

Example 1.10. One set in Z
d for which we can compute the eigen-

functions and eigenvalues exactly is a d-dimensional rectangle

A = {(x1, . . . , xd) ∈ Z
d : 1 ≤ xj ≤ Nj − 1}.

The eigenfunctions are indexed by k̄ = (k1, . . . , kd) ∈ A,

φk̄(x1, . . . , xd) = sin

(

k1πx1

N1

)

sin

(

k2πx2

N2

)

· · · sin

(

kdπxd

Nd

)

,

with eigenvalue

λk̄ =
1

d

[

cos

(

k1π

N1

)

+ · · · + cos

(

kdπ

Nd

)]

.

1.4. Expected time to escape

1.4.1. One dimension. Let Sn denote a one-dimensional random

walk starting at x ∈ {0, . . . , N} and let T be the first time that the

walker reaches {0, N}. Here we study the expected time to reach 0

or N ,

e(x) = E[T | S0 = x].

Clearly e(0) = e(N) = 0. Now suppose x ∈ {1, . . . , N − 1}. Then the

walker takes one step which goes to either x− 1 or x+ 1. Using this

we get the relation

e(x) = 1 +
1

2
[e(x+ 1) + e(x− 1)] .

Hence e satisfies

(1.19) e(0) = e(N) = 0, Le(x) = −1, x = 1, . . . , N − 1.

A simple calculation shows that if f(x) = x2, then Lf(x) = 1 for all

x. Also the linear function g(x) = x is harmonic, Lg ≡ 0. Using this

we can see that one solution to (1.19) is

e(x) = x (N − x).
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In fact, as we will now show, it is the unique solution. Assume that

e1 is another solution. Then for x = 1, . . . , N − 1,

L(e− e1)(x) = Le(x) − Le1(x) = −1 − (−1) = 0,

i.e., e − e1 is harmonic on {1, . . . , N − 1}. Since this function also

vanishes at 0 and N we know that e− e1 = 0.

Suppose N = 2m is even. Then we get

e(m) = N2/4 = m2.

In other words, the expected time for a random walker starting at m

(or anywhere else, in fact) to go distance m is exactly m2.

Suppose the random walker starts at x = 1. Then the expected

time to leave the interval is N − 1. While this is an expected value,

it is not necessarily a “typical” value. Most of the time the random

walker will leave quickly. However, the gambler’s ruin estimate tells

us that there is a probability of 1/m that the random walker will

reach m before leaving the interval. If that happens then the walker

will still have on the order of N2 steps before leaving.

One other interesting fact concerns the time until a walker start-

ing at 1 reaches the origin. Let T0 be the first n such that Sn = 0.

If S0 = 1, we know that T0 < ∞ with probability one. However, the

amount of time to reach 0 is at least as large as the amount of time

to reach 0 or N . Therefore E[T0] ≥ N . Since this is true for every

N , we must have E[T0] = ∞. In other words, while it is guaranteed

that a random walker will return to the origin the expected amount

of time until it happens is infinite!

1.4.2. Several dimensions. Let A be a finite subset of Zd; Sn a

simple random walker starting at x ∈ A; and TA the first time that

the walker is not in A. Let

eA(x) = E[TA | S0 = x].

Then just as in the one-dimensional case we can see that f(x) = eA(x)

satisfies

(1.20) f(x) = 0, x ∈ ∂A

(1.21) Lf(x) = −1, x ∈ A.
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We can argue in the same as in the one-dimensional case that there

is at most one function satisfying these equations. Indeed if f, g were

two such functions, then L[f − g] ≡ 0 with f − g ≡ 0 on ∂A, and only

the zero function satisfies this.

Let f(x) = |x|2 = x2
1 + · · ·+ x2

d. Then a simple calculation shows

that Lf(x) = 1. Let us consider the process

Mn = |Sn∧TA |2 − (n ∧ TA).

Then, we can see that

E[Mn+1 | S0, . . . , Sn] = Mn,

and hence Mn is a martingale. This implies

E[Mn] = E[M0] = |S0|2, E[n ∧ TA] = E[|Sn∧TA |2] − |S0|2.
In fact, we claim we can take the limit to assert

E[TA] = E[|STA |2] − |S0|2.
To prove this we use the monotone convergence theorem, see Exercise

1.6. This justifies the step

lim
n→∞

[

E[|STA |2 1{TA ≤ n}
]

= E[|STA |2].

Also,

E
[

|STA |2 1{TA > n}
]

≤ P{TA > n}
[

max
x∈A

|x|2
]

→ 0.

This is a generalization of a formula we derived in the one-dimensional

case. If d = 1 and A = {1, . . . , N − 1}, and

E[|STA |2] = N2
P{STA = N | S0 = x} = N x,

E[TA] = E[|STA |2] − x2 = x (N − x).

Example 1.11. Suppose that A is the “discrete ball” of radius r

about the origin,

A = {x ∈ Z
d : |x| < r}.

Then every y ∈ ∂A satisfies r ≤ |y| < r + 1. Suppose we start the

random walk at the origin. Then,

r2 ≤ E[TA] < (r + 1)2.
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For any y ∈ A, let Vy denote the number of visits to y before

leaving A,

Vy =

TA−1
∑

n=0

1{Sn = y} =

∞
∑

n=0

1{Sn = y, TA > n}.

Here we again use the indicator function notation. Note that

E[Vy | S0 = x] =
∞
∑

n=0

P{Sn = y, TA > n | S0 = x} =
∞
∑

n=0

pn(x, y;A).

This quantity is of sufficient interest that it is given a name. The

Green’s function GA(x, y) is the function on A×A given by

GA(x, y) = E[Vy | S0 = x] =

∞
∑

n=0

pn(x, y;A).

We define GA(x, y) = 0 if x 6∈ A or y 6∈ A. The Green’s function

satisfies GA(x, y) = GA(y, x). This is not immediately obvious from

the first equality but follows from the symmetry of pn(x, y;A). If we

fix y ∈ A, then the function f(x) = GA(x, y) satisfies the following:

Lf(y) = −1,

Lf(x) = 0, x ∈ A \ {y},
f(x) = 0, x ∈ ∂A.

Note that

TA =
∑

y∈A

Vy,

and hence

E[TA | S0 = x] =
∑

y∈A

GA(x, y).

Theorem 1.12. Suppose A is a bounded subset of Zd, and g : A→ R

is a given function. Then the unique function F : A→ R satisfying

F (x) = 0, x ∈ ∂A,

LF (x) = −g(x), x ∈ A,

is

(1.22) F (x) = E





TA−1
∑

j=0

g(Sj) | S0 = x



 =
∑

y∈A

g(y)GA(x, y).
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We have essentially already proved this. Uniqueness follows from

the fact that if F, F1 are both solutions, then F − F1 is harmonic in

A with boundary value 0 and hence equals 0 everywhere. Linearity

of L shows that

(1.23) L





∑

y∈A

g(y)GA(x, y)



 =
∑

y∈A

g(y)LGA(x, y) = −g(x).

The second equality in (1.22) follows by writing

TA−1
∑

j=0

g(Sj) =

TA−1
∑

j=0

∑

y∈A

g(y) 1{Sj = y}

=
∑

y∈A

g(y)

TA−1
∑

j=0

1{Sj = y}

=
∑

y∈A

g(y)Vy.

We can consider the Green’s function as a matrix or operator,

GAg(x) =
∑

x∈A

GA(x, y) g(y).

Then (1.23) can be written as

−LGAg(x) = g(x),

or GA = [−L]−1 For this reason the Green’s function is often referred

to as the inverse of (the negative of) the Laplacian.

If d ≥ 3, then the expected number of visits to a point is finite

and we can define the (whole space) Green’s function

G(x, y) = lim
A↑Zd

GA(x, y) = E

[ ∞
∑

n=0

1{Sn = y} | S0 = x

]

=

∞
∑

n=0

P{Sn = y | S0 = x}.

It is a bounded function. In fact, if τy denotes the smallest n ≥ 0

such that Sn = y, then

G(x, y) = P{τy <∞ | S0 = x}G(y, y)

= P{τy <∞ | S0 = x}G(0, 0) ≤ G(0, 0) <∞.
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The function G is symmetric and satisfies a translation invariance

property: G(x, y) = G(0, y − x). For fixed y, f(x) = G(x, y) satisfies

Lf(y) = −1, Lf(x) = 0, x 6= y, f(x) → 0 as x→ ∞.

1.5. Space of harmonic functions

If d = 1, the only harmonic functions f : Z → R are the linear

functions f(x) = ax+ b. This follows since Lf(x) = 0 implies

f(x+ 1) = 2f(x) − f(x− 1), f(x− 1) = 2f(x) − f(x+ 1).

If f(0), f(1) are given, then the value of f(x) for all other x is deter-

mined uniquely by the equations above. In other words, the space of

harmonic functions is a vector space of dimension 2.

For d > 1, the space of harmonic functions on Zd is still a vector

space, but it is infinite dimensional. Let us consider the case d = 2.

For every positive number t and real r let

(1.24) f(x1, x2) = ft,r(x1, x2) = erx1 sin(tx2),

Using the sum rule for sine, we get

Lf(x1, x2) =
1

2
f(x1, x2) [cosh(r) + cos(t) − 2].

If we choose r such that

cosh(r) + cos(t) = 2,

then f is harmonic. So is e−rx1 sin(tx2), and hence, since linear

combinations of harmonic functions are harmonic, so is

sinh(rx1) sin(tx2).

If A is a finite subset of Zd, then the space of functions on A

that are harmonic on A has dimension #(∂A). In fact, as we have

seen, there is a linear isomorphism between this space and the set of

all functions on ∂A. In Section 1.2.2, we discussed one basis for the

space of harmonic functions, the Poisson kernel,

HA,y(x) = HA(x, y) = P{STA = y | S0 = x}.
Every harmonic function f can be written as

f(x) =
∑

y∈∂A

f(y)HA,y(x).
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The Poisson kernel is often hard to find explicitly. For some sets A, we

can find other bases that are more explicit. We will illustrate this for

the square, where we use the functions (1.24) which have “separated

variables”, i.e., are products of functions of x1 and functions of x2.

Example 1.13. Let A be the square in Z2,

A = {(x1, x2) : xj = 1, . . . , N − 1}.
We write ∂A = ∂1,0 ∪ ∂1,N ∪ ∂2,0 ∪ ∂2,N where ∂1,0 = {(0, x2) : x2 =

1, . . . , N − 1}, etc. Consider the function

hj(x) = hj,1,N(x) = sinh

(

βj x1

N

)

sin

(

jπx2

N

)

.

Since cosh(0) = 1 and cosh(x) increases to infinity for 0 ≤ x < ∞,

there is a unique positive number which we call βj such that

cosh

(

βj

N

)

+ cos

(

jπ

N

)

= 2,

When we choose this βj , hj is a harmonic function. Note that hj

vanishes on three of the four parts of the boundary and

hj(N, y) = sinh(βj) sin

(

jπy

N

)

.

If we choose y ∈ {1, . . . , N − 1} and find constants c1, . . . , cN−1 such

that
N−1
∑

j=1

cj sinh(βj) sin

(

jπk

N

)

= δ(y − k),

Then,

H(N,y)(x) = HA,(N,y)(N, x)

N−1
∑

j=1

cj hj(x).

But we have already seen that the correct choice is

cj =
2

(N − 1) sinh(βj)
sin

(

jπy

N

)

.

Therefore,

(1.25) H(N,y)(x1, x2) =

2

N − 1

N−1
∑

j=1

1

sinh(βj)
sin

(

jπy

N

)

sinh

(

βj x1

N

)

sin

(

jπx2

N

)

.
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The formula (1.25) is somewhat complicated, but there are some

nice things that can be proved using this formula. Let AN denote the

square and let

ÂN =

{

(x1, x2) ∈ A :
N

4
≤ xj ≤ 3N

4

}

.

Note that ÂN is a cube of (about) half the side length of AN in the

middle ofAN . Let y ∈ {1, . . . , N−1} and considerH(N,y). In Exercise

1.13 you are asked to show the following: there exist c, c1 < ∞ such

that the following is true for everyN and every y and every x, x̃ ∈ ÂN :

•

(1.26) c−1N−1 sin(πy/N) ≤ HN,y(x) ≤ cN−1 sin(πy/N).

In particular,

(1.27) HN,y(x) ≤ c2HN,y(x̃).

•

(1.28) |HN,y(x) −HN,y(x̃)| ≤

c1
|x− x̃|
N

Hn,y(x) ≤ c1 c
|x− x̃|
N

N−1 sin(πy/N).

The argument uses the explicit formula that we derive for the rec-

tangle. Although we cannot get such a nice formula in general, we

can derive two important facts. Suppose A is a finite subset of Z2

containing AN . Then for x ∈ AN , z ∈ ∂A,

HA(x, z) =
∑

y∈∂AN

HAN (x, y)HA(y, z).

Using this and (1.27) we get for x, x̃ ∈ ÂN ,

HA(x, z) ≤ c2HA(x̃, z),

|HA(x, z) −HA(x̃, z)| ≤ c1
|x− x̃|
N

HA(x, z).

We can extend this to harmonic functions.
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Theorem 1.14 (Difference estimates). There is a c < ∞ such that

if A is a finite subset of Zd and F : A→ [−M,M ] is harmonic on A,

then if x, z ∈ A with |z − x| = 1,

(1.29) |F (z) − F (x)| ≤ cM

dist(x, ∂A)
.

Theorem 1.15 (Harnack principle). Suppose K is a compact subset

of Rd and U is an open set containing K. There is a c = c(K,U) <∞
such that the following holds. Suppose N is a positive integer; A is

a finite subset of Zd contained in NU = {z ∈ Rd : z/N ∈ U}; and

Â is a subset of A contained in NK. Suppose F : A → [0,∞) is a

harmonic function. Then for all x, z ∈ Â,

F (x) ≤ c F (z).

As an application of this, let us show that: the only bounded

functions on Zd that are harmonic everywhere are constants. For d =

1, this is immediate from the fact that the only harmonic functions

are the linear functions. For d ≥ 2, we suppose that F is a harmonic

function on Zd with |F (z)| ≤ M for all z. If x ∈ Zd and AR is a

bounded subset of Z
d containing all the points within distance R of

the origin, then (1.29) shows that

|F (x) − F (0)| ≤ cM
|x|

R− |x| .

(Although (1.29) gives this only for |x| = 1, we can apply the estimate

O(|x|) times to get this estimate.) By letting R → ∞ we see that

F (x) = F (0). Since this is true for every x, F must be constant.

1.5.1. Exterior Dirichlet problem. Consider the following prob-

lem. Suppose A is a cofinite subset of Zd, i.e., a subset such that

Zd \ A is finite. Suppose F : Zd \ A → R is given. Find all bounded

functions on Zd that are harmonic on A and take on the boundary

value F on Z
d \ A. If A = Z

d, then this was answered at the end

of the last section; the only possible functions are constants. For the

remainder of this section we assume that A is nontrivial, i.e., Zd \A
is nonempty.

For d = 1, 2, there is, in fact, only a single solution. Suppose

F is such a function with L = sup |F (x)| < ∞. Let Sn be a simple
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random walk starting at x ∈ Zd, and let T = TA be the first time n

with Sn 6∈ A. If d ≤ 2, we know that the random walk is recurrent

and hence T < ∞ with probability one. As done before, we can see

that Mn = F (Sn∧T ) is a martingale and hence

F (x) = M0 = E[Mn] = E[F (ST ) 1{T ≤ n}] + E [F (Sn) 1{T > n}] .
The monotone convergence theorem tells us that

lim
n→∞

E[F (ST ) 1{T ≤ n}] = E[F (ST )].

Also

lim
n→∞

|E [F (Sn) 1{T > n}]| ≤ lim
n→∞

LP{T > n} = 0.

Therefore,

F (x) = E[F (ST ) | S0 = x],

which is exactly the same solution as we had for bounded A.

If d ≥ 3, there is more than one solution. In fact,

f(x) = P{TA = ∞ | S0 = x},
is a bounded function that is harmonic in A and equals zero on Z

d \
A. The next theorem shows that this is essentially the only new

function that we get. We can interpret the theorem as saying that

the boundary value determines the function if we include ∞ as a

boundary point.

Theorem 1.16. If A is a proper cofinite subset of Zd (d ≥ 3), then

the only bounded functions on Zd that vanish on Zd \A and are har-

monic on A are of the form

(1.30) F (x) = r P{TA = ∞ | S0 = x}, r ∈ R.

We will first consider the case A = Zd \ {0} and assume that

F : Zd → [−M,M ] is a function satisfying F (0) = 0 and LF (x) = 0

for x 6= 0. Let α = LF (0) and let

f(x) = F (x) + αG(x, 0).

Then f is a bounded harmonic function and hence must be equal to

a constant. Since G(x, 0) → 0 as x→ ∞, the constant must be r and

hence

F (x) = r − αG(x, 0) =
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r P{τ0 = ∞ | S0 = x} + P{τ0 <∞ | S0 = x}[r − αG(0, 0)].

Since F (0) = 0 and P{τ0 = ∞ | S0 = 0} = 0, we know that r −
αG(0, 0) = 0 and hence F is of the form (1.30).

For other cofinite A, assume F is such a function with |F | ≤ 1.

Then F satisfies

LF (x) = −g(x), x ∈ A

for some function g that vanishes on A. In particular,

f(x) = F (x) +
∑

y∈Zd\A

G(x, y) g(x),

is a bounded harmonic function (why is it bounded?) and hence

constant. This tells us that there is an r such that

F (x) = r −
∑

y∈Zd\A

G(x, y) g(x),

which implies, in particular, that F (x) → r as r → ∞. Also, if

x ∈ Z
d \A, F (x) = 0 which implies

∑

y∈Zd\A

G(x, y) g(x) = r.

If we show that G(x, y) is invertible on Zd \ A, then we know there

is a unique solution to this equation, which would determine g, and

hence F .

To do this, assume #(Zd\A) = K; let T̃A = min{n ≥ 1 : Sn 6∈ A};
and for x, y ∈ Zd \A, we define

J(x, y) = P{T̃A <∞, ST̃A
= y | S0 = x}.

Then J is a K ×K matrix. In fact (Exercise 1.25),

(1.31) (J − I)G = −I.
In particular, G is invertible.

1.6. Exercises

Exercise 1.1. Suppose that X1, X2, . . . are independent, identically

distributed random variables such that

E[Xj ] = 0, P{|Xj| > K} = 0,
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for some K <∞.

• Let M(t) = E[etXj ] denote the moment generating function

of Xj . Show that for every t > 0, ǫ > 0,

P{X1 + · · · +Xn ≥ ǫn} ≤ [M(t) e−tǫ]n.

• Show that for each ǫ > 0, there is a t > 0 such that

M(t) e−ǫt < 1. Conclude the following: for every ǫ > 0,

there is a ρ = ρ(ǫ) < 1 such that for all n

P{|X1 + · · · +Xn| ≥ ǫn} ≤ 2 ρn.

• Show that we can prove the last result with the boundedness

assumption replaced by the following: there exists a δ > 0

such that for all |t| < δ, E[etXj ] <∞.

Exercise 1.2. Prove the following: there is a constant γ (called

Euler’s constant) and a c <∞ such that for all positive integers n,
∣

∣

∣

∣

∣

∣





n
∑

j=1

1

j



− γ − logn

∣

∣

∣

∣

∣

∣

≤ c

n
.

Hint: write

log

(

n+
1

2

)

− log

(

1

2

)

=

∫ n+ 1
2

1
2

1

x
dx,

and estimate
∣

∣

∣

∣

∣

1

j
−
∫ j+ 1

2

j− 1
2

dx

x

∣

∣

∣

∣

∣

.

Exercise 1.3. Show that there is a c > 0 such that the following is

true. For every real number r and every integer n,

(1.32) e−cr2/n ≤ er
(

1 − r

n

)n

≤ ecr2/n.

Exercise 1.4. Find constants a1, a2 such that the following is true

as n→ ∞,
(

1 − 1

n

)n

= e−1
[

1 +
a1

n
+
a2

n2
+O

(

n−3
)

]

.

Exercise 1.5. Let Sn be a one-dimensional simple random walk and

let

pn = P{S2n = 0 | S0 = 0}.



1.6. Exercises 45

• Show that

(1.33) pn+1 = pn
2n+ 1

2n+ 2
,

and hence

pn =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
.

• Use the relation (1.33) to give another proof that there is a

c such that as n→ ∞
pn ∼ c√

n
.

(Our work in this chapter shows in fact that c = 1/
√
π, but you do

not need to prove this here.)

Exercise 1.6.

• Show that if X is a nonnegative random variable, then

lim
n→∞

E[X 1{X ≤ n}] = lim
n→∞

E[X ∧ n] = E[X ].

• (Monotone Convergence Theorem) Show that if 0 ≤ X1 ≤
X2 ≤ · · · , then

E

[

lim
n→∞

Xn

]

= lim
n→∞

E[Xn].

In both parts, the limits and the expectations are allowed to take on

the value infinity.

Exercise 1.7. Prove Theorem 1.6.

Exercise 1.8. Suppose X1, X2, . . . are independent random variables

each of whose distribution is symmetric about 0. Show that for every

a > 0,

P

{

max
1≤j≤n

X1 + · · · +Xj ≥ a

}

≤ 2 P{X1 + · · · +Xn ≥ a}.

(Hint: Let K be the smallest j with X1 + · · · +Xj ≥ a and consider

P{X1 + · · · +Xn ≥ a | K = j}. )

Exercise 1.9. Suppose X is a random variable taking values in Z.

Let

φ(t) = E[eitX ] = E[cos(tX)] + iE[sin(tX)] =
∑

x∈Z

eitx
P{X = x},
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be its characteristic function. Prove the following facts.

• φ(0) = 1 , |φ(t)| ≤ 1 for all t and φ(t+ 2π) = φ(t).

• If the distribution of X is symmetric about the origin, then

φ(t) ∈ R for all t.

• For all integers x,

P{X = x} =
1

2π

∫ π

−π

φ(t) e−ixt dt.

• Let k be the greatest common divisor of the set of integers

n with P{|X | = n} > 0. Show that φ(t + (2π/k)) = φ(t)

and |φ(t)| < 1 for 0 < t < (2π/k).

• Show that φ is a continuous (in fact, uniformly continuous)

function of t.

Exercise 1.10. Suppose X1, X2, . . . are independent, identically dis-

tributed random variables taking values in the integers with char-

acteristic function φ. Let Sn = X1 + · · · + Xn. Suppose that the

distribution of Xj is symmetric about the origin, Var[Xj ] = E[X2
j ] =

σ2,E[|Xj |3] <∞. Also assume,

P{Xj = 0} > 0, P{Xj = 1} > 0.

The goal of this exercise is to prove

lim
n→∞

√
2πσ2nP{Sn = 0} = 1.

Prove the following facts.

• The characteristic function of X1 + · · · +Xn is φn.

• For every 0 < ǫ ≤ π there is a ρ < 1 such that |φ(t)| < ρ for

ǫ ≤ |t| ≤ π.

•

P{Sn = 0} =
1

2π

∫ π

−π

φ(t)n dt =
1

2π
√
n

∫ π
√

n

−π
√

n

φ(t/
√
n)n dt.

• There is a c such that for |t| ≤ π,
∣

∣

∣

∣

φ(t) − 1 − σ2 t2

2

∣

∣

∣

∣

≤ c t3.
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•

lim
n→∞

∫ π
√

n

−π
√

n

φ(t/
√
n)n dt =

∫ ∞

−∞
e−σ2t2/2 dt =

√
2π

σ
.

Hint: you will probably want to use (1.32).

Exercise 1.11. Suppose A is a finite subset of Zd and

F : ∂A→ R, g : A→ R

are given functions. Show that there is a unique extension of F to A

such that

LF (x) = −g(x), x ∈ A.

Give a formula for F .

Exercise 1.12. Suppose A is a finite subset of Zd and

F : ∂A→ R, f : A→ R

are given functions. Show that there is a unique function pn(x), n =

0, 1, 2 . . . , x ∈ A satisfying the following:

pn(x) = F (x), x ∈ ∂A,

∂pn(x) = LF (x), x ∈ A.

Show that p(x) = limn→∞ pn(x) exists and describe the limit function

p.

Exercise 1.13. Prove (1.26) and (1.28).

Exercise 1.14. Find the analogue of the formula (1.25) for the d-

dimensional cube

A = {(x1, . . . , xd) ∈ Z
d : xj = 1, . . . , N − 1}

Exercise 1.15. Suppose F is a harmonic function on Zd such that

lim
|x|→∞

|F (x)|
|x| = 0.

Show that F is constant.

Exercise 1.16. The relaxation method for solving the Dirichlet prob-

lem is the following. Suppose A is a bounded subset of Zd and

F : ∂A→ R is a given function. Define the functions Fn(x), x ∈ A as

follows.

Fn(x) = F (x) for all n if x ∈ ∂A.
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F0(x), x ∈ A, is defined arbitrarily ,

and for n ≥ 0,

Fn+1(x) =
1

2d

∑

|x−y|=1

Fn(y), x ∈ A.

Show that for any choice of initial function F0 on A,

lim
n→∞

Fn(x) = F (x), x ∈ A,

where F is the solution to the Dirichlet problem with the given bound-

ary value. (Hint: compare this to Exercise 1.12.)

Exercise 1.17. Let Sn denote a d-dimensional simple random walk

and let R1
n, . . . , R

d
n denote the number of steps taken in each of

the d components. Show that for all n > 0, the probability that

R1
2n, . . . , R

d
2n are all even is 2−(d−1).

Exercise 1.18. Suppose that Sn is a biased one-dimensional random

walk. To be more specific, let p > 1/2 and

Sn = X1 + · · · +Xn,

where X1, . . . , Xn are independent with

P{Xj = 1} = 1 − P{Xj = −1} = p.

Show that there is a ρ < 1 such that as n→ ∞,

P{S2n = 0} ∼ ρn 1√
πn

.

Find ρ explicitly. Use this to show that with probability one the

random walk does not return to the origin infinitely often.

Exercise 1.19. Suppose δn is a sequence of real numbers with |δn| <
1 and such that

∞
∑

j=1

|δn| <∞.

Let

sn =

n
∏

j=1

(1 + δj).
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Show that the limit s∞ = limn→∞ sn exists and is strictly positive.

Moreover, there exists an N such that for all n ≥ N ,
∣

∣

∣

∣

1 − sn

s∞

∣

∣

∣

∣

≤ 2

∞
∑

j=n+1

|δj |.

Exercise 1.20. Find the number t such that

n! =
√

2π nn+ 1
2 e−n

[

1 +
t

n
+O(n−2)

]

.

Exercise 1.21. Prove that
∫ ∞

−∞
e−x2/2 dx =

√
2π.

Hint: there are many ways to do this but direct antidifferentiation is

not one of them. One approach is to consider the square of the left

hand side, write it as a double (iterated) integral, and then use polar

coordinates.

Exercise 1.22. Suppose Sn is a simple random walk in Z
d and A ⊂

Zd is finite with N points. Let TA be the smallest n such that Sn 6∈ A.

Show that

P{TA > kN} ≤
(

1 − 1

2d

)k

.

Exercise 1.23. Finish the proof of Theorem 1.9 by doing the follow-

ing.

• Use connectedness of A to show that any nonzero eigen-

function φ with every component nonnegative must actually

have every component strictly positive.

• Give an example of a disconnected A such that λ1 has mul-

tiplicity greater than one.

• Given an example of a disconnected A such that λ1 has

multiplicity one. Does Theorem 1.9 hold in this case?

Exercise 1.24. Suppose A is a bounded subset of Zd. We call {x, y}
an edge of A if x, y ∈ A, |x − y| = 1 and at least one of x, y is in A.

If F : A→ R is a function, we define its energy by

E(f) =
∑

[f(x) − f(y)]2,
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where the sum is over the edges of A. For any F : ∂A → R, define

E(F ) to be the infimum of E(f) where the infimum is over all f on A

that agree with F on ∂A. Show that if f agrees with F on ∂A, then

E(f) = E(F ) if and only if f is harmonic in A.

Exercise 1.25. Verify (1.31).

Exercise 1.26. We will construct a “tree” each of whose vertices has

three neighbors. We start by constructing T1 as follows: the vertices

of T1 are the “empty word”, denoted by o, and all finite sequences of

the letters a, b, i.e., “words” x1 · · ·xn where x1, x2, . . . , xn ∈ {a, b}.
Both words of one letter are adjacent to o. We say that a word of

length n− 1 and of length n are adjacent if they have the exact same

letters, in order, in the first n− 1 positions. Note that each word of

positive length is adjacent to three words and the root is adjacent to

only two words. We construct another tree T2 similarly, calling the

root õ and using the letters ã, b̃. Finally we make a tree T by taking

the union of T1 and T2 and adding one more connection: we say that

o and õ are adjacent.

• Convince yourself that T is a connected tree, i.e., between

any two points of T there is a unique path in the tree that

does not go through any point more than once.

• Let Sn denote simple random walk on the tree, i.e., the

process that at each step chooses one of the three nearest

neighbors at random, each with probability 1/3, with the

choice being independent of all the previous moves. Show

that Sn is transient, i.e., with probability one Sn visits the

origin only finitely often. (Hint: Exercise 1.18 could be

helpful.)

• Show that with probability one the random walk does one

of the two following things: either the random walk visits

T1 only finitely often or it visits T2 only finitely often. Let

f(x) be the probability that the walk visits T1 finitely often.

Show that f is a nonconstant bounded harmonic function.

(A function f on T is harmonic if for every x ∈ T , f(x)

equals the average value of f on the nearest neighbors of x.)
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• Consider the space of bounded harmonic functions on T .

Show that this is an infinite dimensional vector space.

Exercise 1.27. Show that if A ⊂ A1 are two subsets of Zd, then

λA ≤ λA1 . Show that if A1 is connected and A 6= A1, then λA < λA1 .

Give an example with A1 disconnected and A a strict subset of A1

for which λA = λA1 .

Exercise 1.28. Consider β(j,N), j = 1, . . . , N − 1 where β(j,N) is

the unique positive number satisfying

cosh

(

β(j,N)

N

)

+ cos

(

jπ

N

)

= 2.

Prove the following estimates. The constants c1, c2, c3 are positive

constants independent of N and the estimates should hold for all N

and all j = 1, . . . , N − 1.

•
β(1, N) < β(2, N) < · · · < β(N − 1, N) ≤ N cosh−1(2).

• There is a c1 such that
∣

∣

∣

∣

cosh

(

jπ

N

)

+ cos

(

jπ

N

)

− 2

∣

∣

∣

∣

≤ c1 j
4

N4
.

• There is a c2 such that

|β(j,N) − πj| ≤ c2 j
4

N3
.

• There is a c3 such that

β(j,N) ≥ c3 j.





Chapter 2

Brownian Motion and
the Heat Equation

2.1. Brownian motion

In this section we introduce Brownian motion. Brownian motion can

be considered as the limit of random walk as the time and space

increments go to zero. It is not obvious how to take such a limit

or even what is meant by the word limit. Rather than worry about

these details for the moment, we will instead assume some kind of

limit of simple random walk exists and list some properties that the

limit should have. We will start with the one-dimensional case. The

process will be defined in continuous time and continuous space — we

let Wt be the position of the Brownian motion (continuous random

walker) at time t.

♦ Brownian motion is also called the Wiener process. For mathematicians

the terms Brownian motion and Wiener process are synonymous. In scientific

literature, the term Brownian motion is often used for a physical process for

which there are several different mathematical models one of which is the one

we discuss here. The term Wiener process always refers to the process we

describe here.

53
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Brownian motion is an example of a continuous stochastic process.

A stochastic process is a collection of random variables {Wt} indexed

by time. In our case time runs over the nonnegative reals. (The

simple random walk is a stochastic process with time indexed by the

nonnegative integers). This collection of random variables can also

be viewed as a random function

t 7−→ Wt.

We will work up to a definition of Brownian motion by considering

a discrete approximation. Suppose we have small steps in time and

space so that in time ∆t the typical change in space is of order ∆x.

Simple random walk Sn on Z is a process with ∆t = 1 and ∆x = 1;

in each integer time step the process moves distance one. Let us take

the random walk path and change the time and space increments.

Suppose that the time increments are ∆t = δ = 1/N where N is a

large integer. Let us see how we should change the spatial steps ∆x.

For large N the limit process should look like

Wkδ ≈ ∆xSk,

where ∆x denotes the spatial scaling factor. We need to figure out

what ∆x should be in terms of δ so that the process scales correctly.

Let us normalize the limit process so that E[W 2
1 ] = 1. Since

E
[

(∆xSN )2
]

= (∆x)2 E[S2
N ] = (∆x)2N

we see that the right scaling is ∆x = 1/
√
N =

√
δ. Therefore, if

t = jδ = j/N , we write

Wt = Wj/N ≈ Sj√
N
.

♦ The above may seem a little strange at first. In N time steps of size

1/N , the process has taken N spatial steps of size 1/
√

N . It may seem that

the process will have gone distance
√

N . However, about half of the steps are

in the positive direction and about half in the negative direction so that the

net distance turns out to be of order one.
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♦ If X1, X2, . . . are independent random variables with mean µ and
variance σ2, the central limit theorem states that for large n the distribution
of

Zn =
(X1 + · · · + Xn) − nµ√

σ2n
is approximately that of a normal distribution with mean 0 and variance 1.
More precisely, for every a < b,

lim
n→∞

P{a ≤ Zn ≤ b} =

Z b

a

1√
2π

e−x2/2 dx.

Let us write

Wt = Wjδ ≈ Sj√
N

=
Sj√
j

√

j

N
=

Sj√
j

√
t.

The central limit theorem tells us that as j → ∞, the distribution of

Sj/
√
j approaches a normal distribution with mean zero and variance

one. Therefore
√
t Sj/

√
j approaches a normal distribution with mean

zero and variance t. Recall such a random variable has density

1√
2πt

e−
x2

2t , −∞ < x <∞.

(It is easy to check that if Y has a normal distribution with variance

1, then σ Y has a normal distribution with mean 0 and variance σ2.)

Using this as a motivation, we have the first property for our definition

of Brownian motion.

• For each t, the random variableWt has a normal distribution

with mean zero and variance t.

In fact, we can do the same argument for Wt − Ws to derive the

following sometimes referred to as identically distributed normal in-

crements.

• For 0 ≤ s < t < ∞, the random variable Wt −Ws has a

normal distribution with mean 0 and variance t− s.

The next property is called independent increments. If Sn is a

simple random walk and n < m, then the random variable Sm − Sn

is independent of the random walk up to time n. We expect this

property to hold in the limit.
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• For all s < t, the random variable Wt −Ws is independent

of all the random variables {Wr : r ≤ s}.

♦ Note that we are not saying that the positions Ws and Wt are inde-

pendent for s < t. In fact, if s and t are close, we expect Ws and Wt to be

close. It is the increments, Ws and Wt − Ws that are independent.

A major technical problem in defining a stochastic process such

as Wt is that there are uncountably many positive real numbers t.

It is easier to consider a process defined on only a countable set of

times. If we choose a countable set that is dense in the set of all times,

then we would hope this is good enough. We can restrict ourselves at

the moment to rational times, and we might as well restrict ourselves

even more to a subset of these, the dyadic rationals. Let Dn denote

the set of nonnegative rational numbers with denominator 2n (not

necessarily in reduced form):

Dn =

{

k

2n
: k = 0, 1, 2, . . .

}

.

Then D0 ⊂ D1 ⊂ D2 ⊂ · · · . The set of (nonnegative) dyadic rationals

is D = ∪nDn.

We combine our assumptions so far into a definition.

Definition 2.1. A (standard one-dimensional) Brownian motion on

the dyadic rationals is a collection of random variables {Wt : t ∈ D}
satisfying:

• For each n, the random variables

Wk/2n −W(k−1)/2n , k = 1, 2, . . .

are independent normal random variables with mean zero

and variance 2−n.

If we were only interested in the position of the Brownian motion

at the times 1/2n, 2/2n, 3/2n, . . ., then we could consider this as a

random walk in time increments of size 2−n. The spatial increments

would not be two-valued as in the case for simple random walk but

rather would have normal distributions.
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Let us write

(2.1) J(k, n) = 2n/2
[

Wk/2n −W(k−1)/2n

]

.

Then another way of phrasing the condition is to say that for each n,

the random variables

J(1, n), J(2, n), J(3, n), . . .

are independent normal random variables each with mean zero and

variance one.

We have stated the requirements on Wt, t ∈ D to be a Brownian

motion. In order to guarantee that the definition is at all useful, we

need to show that such a process exists. We prove this in Section

2.7.1. This section can be skipped if one is content to believe that

such random variables can be found. Using the definition one can

show

• If s, t ∈ D with 0 ≤ s ≤ t, then Wt −Ws is independent of

{Wr : r ≤ s} and has a normal distribution with mean zero

and variance t− s.

The dyadic rationals D have the property that if j is an integer,

then

2j D := {2jq : q ∈ D} = D.
If Wt is a Brownian motion and we scale time by 2j , then we get

another Brownian motion provided that we scale space by 1/
√

2j. To

be more precise: If Wq, q ∈ D is a standard Brownian motion, j ∈ Z,

and

W̃q = 2−j/2W2jq,

then W̃q is also a standard Brownian motion. This is checked by ver-

ifying that W̃q satisfies the properties that define a Brownian motion

(Exercise 2.1).

The times D are dense in the positive reals. If we know the value

of a function Wt at all times t in a dense subset, do we know Wt at all

times? The answer is yes, if Wt is a continuous function of t. In order

to show that Wt is a continuous function it suffices to show that Wt

restricted to t ∈ D is uniformly continuous on each compact interval.
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♦ Suppose f : D → R is a function and suppose that on every bounded

interval [a, b], f is uniformly continuous. This means that for every ǫ > 0,

there is a δ > 0 such that if |s − t| < δ and s, t ∈ D, then |f(s) − f(t)| < ǫ.

Since D is a dense subset of [0,∞), if a ≤ t ≤ b we can find a sequence of

tn ∈ D∩ [a, b] with tn → t. Since f is uniformly continuous on [a, b], it is easy

to check that {f(tn)} is a Cauchy sequence and hence has a unique limit. If

we define f(t), t ∈ R as the limit, then it is also easy to see that f is uniformly

continuous on [a, b]. We summarize: if f is a function on D that is uniformly

continuous on each bounded interval [a, b], then there is a unique extension of

f to R that is continuous.

For Brownian motion on the dyadics, uniform continuity holds

with probability one.

Theorem 2.2. If Wq, q ∈ D is a standard one-dimensional Brownian

motion, then with probability one, for every interval [a, b], the function

Wq is uniformly continuous. In particular, Wt, t ∈ [0,∞) can be

defined by continuity so it has the following properties:

• W0 = 0.

• For every 0 ≤ s ≤ t, Wt − Ws has a normal distribution

with mean zero and variance t − s. Moreover, Wt −Ws is

independent of {Wr : r ≤ s}.
• With probability one, the function t 7→ Wt is a continuous

function.

♦ There is a simple heuristic reason why Wt should be continuous.
Consider Wt+δ − Wt. Since this random variable has mean zero and variance
δ, E[(Wt+δ − Wt)

2] = δ. In other words, one expects that

(Wt+δ − Wt)
2 ≈ δ, |Wt+δ − Wt| ≈

√
δ.

As δ → 0, we have
√

δ → 0, and so we expect continuity. This heuristic

argument is nice but in order to make it rigorous we need to show that not

only is the average value of (Wt+δ − Wt)
2 of order δ but in some sense it is

always of that order (or not too much bigger).
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The hardest part of the proof of this theorem is establishing the

uniform continuity. This will require making some estimates, or as

mathematicians sometimes say, getting our hands dirty. We will do

the proof for the interval [0, 1]; other intervals can be handled simi-

larly. Let

(2.2) K∗
n = sup

{

|Ws −Wt| : 0 ≤ s, t ≤ 1, |s− t| ≤ 2−n, s, t ∈ D
}

.

Then, uniform continuity of the function t 7→ Wt is equivalent to

the statement that K∗
n → 0 as n → ∞. (Verify this if this is not

immediate to you.) A slightly different quantity is easier to estimate,

(2.3)

Kn = max
k=1,...,2n

sup

{

|Wq −W(k−1)/2n | : q ∈ D, k − 1

2n
≤ q ≤ k

2n

}

.

The difference is that we require one (but not both) of the times to

be in Dn. Using the triangle inequality, we can see that

Kn ≤ K∗
n ≤ 3Kn,

and hence it is equivalent to show that Kn → 0. In Section 2.7.2 we

give some sharp estimates for the probability that Kn is large. In

particular, we show that

(2.4)
∞
∑

n=1

P{Kn ≥ 2
√
n 2−n/2} <∞.

The Borel-Cantelli lemma (Lemma 1.3) then implies that with prob-

ability one, the estimate

Kn < 2
√
n 2−n/2

holds for all n sufficiently large. In particular, Kn → 0.

Brownian motion defines a random function t 7→Wt. We can ask:

how smooth is such a function? Suppose we try to take a derivative

at a point t. The definition of the derivative is

dWt

dt
= lim

δ→0

Wt+δ −Wt

δ
,

provided that the limit exists. The typical magnitude of the numera-

tor on the right hand side is |Wt+δ −Wt| ≈
√
δ which is much larger

than δ if δ is small. From this we see that we do not expect the

derivative to exist very often, and, in fact, it never exists.
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Theorem 2.3. With probability one, the function t 7→Wt is nowhere

differentiable.

It is not easy to write down even one function that is continuous

but nowhere differentiable, but this tells us that this is always true for

the Brownian motion. We have given the intuition for this theorem

already. We leave the details of the proof as Exercise 2.26.

♦ While it may appear surprising that we are getting functions that are

not differentiable, one can actually see that our initial assumptions imply that

we have nondifferentiable functions. Suppose Wt were differentiable at t0 with

derivative m. Then one could determine m by looking at Wt for t ≤ t0. We

would know that for small t > t0, Wt − Wt0 ≈ m (t − t0). But one of our

assumptions is that the increment Wt − Wt0 is independent of the values of

the Brownian motion before time t0.

To define a Brownian motion in Rd, we take d independent Brow-

nian motions W 1
t , . . . ,W

d
t and let Wt = (W 1

t , . . . ,W
d
t ). The density

of Wt is

(2πt)−d/2 exp

{

x2
1 + · · · + x2

d

2t

}

.

Note that the density of Wt is radially symmetric. (The fact that

independent variables in each coordinate give something that is radi-

ally symmetric may be surprising. In fact, the normal distribution is

in some sense the only distribution with this property, see Exercise

2.4.) We will use the fact that the d-dimensional Brownian motion is

invariant under rotations.

Suppose Wt is a Brownian motion starting with W0 = x and U is

an open subset of Rd. Then E[Wt] = x. We need a “stopped” version

of this result. Let

T = TU = inf{t ≥ 0 : Wt 6∈ U}.
The random variable T is an example of a stopping time; in this case,

we stop when we leave U . The term stopping time implies that the

decision whether or not to stop at a particular time is made using

only the information available at that time without looking into the

future. Recall that t ∧ T = min{t, T }.
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Proposition 2.4. For every t ≥ 0,

(2.5) E[Wt∧T |W0 = x] = x.

Proof. We will prove this for t = 1 and x = 0; the proof for other

values of t, x is similar. For each positive integer n, let

Tn = min{q ∈ Dn : q ≥ T }.

In other words, Tn = k/2n if (k − 1)/2n ≤ T < k/2n. We will first

show that for each n,

(2.6) E[W1∧Tn ] = 0.

Indeed, we can write

W1∧Tn =

2n
∑

k=1

1

{

T >
k − 1

2n

}

[Wk/2n −W(k−1)/2n ],

where again we use the indicator function notation. Hence,

E[W1∧Tn ] =

2n
∑

k=1

E

[

1

{

T >
k − 1

2n

}

[Wk/2n −W(k−1)/2n ]

]

.

The event T > (k − 1)/2n can be determined by observing Wt for

t ≤ (k − 1)/2n. Therefore, Wk/2n −W(k−1)/2n is independent of this

event and

E

[

1

{

T >
k − 1

2n

}

[Wk/2n −W(k−1)/2n ]

]

=

P

{

T >
k − 1

2n

}

E
[

Wk/2n −W(k−1)/2n

]

= 0.

By summing, we get (2.6). Finally, note that

|W1∧Tn −W1∧T | ≤ Kn → 0,

where Kn is as defined in (2.3). Using this we get the proposition. �
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2.2. Harmonic functions

Recall that a function f on Zd is harmonic at x if f(x) equals the

average of f on its nearest neighbors. If U is an open subset of Rd,

we will say that f is harmonic in U if and only if it continuous and

satisfies the following mean value property: for every x ∈ U , and every

0 < ǫ < dist(x, ∂U),

(2.7) f(x) = MV (f ;x, ǫ) =

∫

|y−x|=ǫ

f(y) ds(y).

This definition includes a number of undefined quantities so we will

now define them. First, dist(x, ∂U) denotes the distance from x to

the boundary of U which can be defined as inf{|x− y| : y 6∈ U}. The

s in the integral refers to surface measure on the sphere of radius ǫ

about x normalized so that
∫

|y−x|=ǫ

1 ds(y) = 1.

Here MV (f ;x, ǫ) stands for the mean value of f on the sphere of

radius ǫ about x.

♦ If d = 3, s is a constant times the usual surface area. For d > 3, it is

the analogous (d − 1)-dimensional “volume”.

In the case d = 1, f is harmonic in (a, b) if it is continuous and

for each x, ǫ with a < x− ǫ < x < x+ ǫ < b,

(2.8) f(x) =
1

2
[f(x+ ǫ) + f(x− ǫ)] .

Linear functions f(x) = mx + r satisfy this equation. The next

proposition shows that these are the only harmonic functions in R.

Proposition 2.5. If f : (a, b) → R is harmonic, then

f(x) = mx+ r

for some m, r.
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Proof. We will assume a < 0, b > 1 and f(0) = 0, f(1) = 1. We

will show f(x) = x for 0 ≤ x ≤ 1. The general proof works similarly.

Using (2.8) with ǫ = 1/2 gives

f

(

1

2

)

=
f(0) + f(1)

2
=

1

2
.

Similarly, by iterating (2.8), letting ǫ range over the dyadic rationals

D ∩ [0, 1], we can see that for every dyadic rational f(j/2n) = j/2n.

Since f is continuous, we must have f(t) = t for all t. �

Even though the last proof was easy, we will give another proof of

the last proposition. Suppose that f has two continuous derivatives

in a neighborhood of x. Then Taylor’s theorem gives

f(x+ ǫ) = f(x) + ǫ f ′(x) +
ǫ2

2
f ′′(x) + o(ǫ2),

f(x− ǫ) = f(x) − ǫ f ′(x) +
ǫ2

2
f ′′(x) + o(ǫ2),

where o(ǫ2) denotes a function (depending on x) such that o(ǫ2)/ǫ2 →
0 as ǫ→ 0. If we add the two equations and let ǫ→ 0, we get

(2.9) f ′′(x) = lim
ǫ→0

f(x+ ǫ) + f(x− ǫ) − 2f(x)

ǫ2
.

If f is harmonic, then the right hand side equals zero for all x and

hence f ′′ ≡ 0. From calculus, we know that this implies that f is a

linear function.

We can rewrite the right hand side of (2.9) as

lim
ǫ→0

1

ǫ

[

f(x+ ǫ) − f(x)

ǫ
− f(x) − f(x− ǫ)

ǫ

]

.

The fractions inside the square brackets are approximations of f ′ and

from this we see get an expression that looks like the derivative of f ′.

We can extend (2.9) to d dimensions. Define

∆f(x) = lim
ǫ→0

1

ǫ2

∑

y∈Zd,|y|=1

[f(x+ ǫy) − f(x)].

♦ A function f : R
d → R is Ck if all of its partial derivatives of order k

exist and are continuous functions.
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Proposition 2.6. Suppose f is a C2 function in a neighborhood of

x in Rd. Then ∆f(x) exists at x and

(2.10) ∆f(x) =

d
∑

j=1

∂jjf(x).

Proof. If yj is the unit vector in Zd (or Rd) whose jth component

equals 1, we can use the one-dimensional Taylor theorem in the di-

rection of yj to give

f(x± ǫ yj) = f(x) ± ǫ ∂jf(x) +
ǫ2

2
∂jjf(x) + o(ǫ2).

Therefore,

∑

y∈Zd,|y|=1

[f(x+ ǫy) − f(x)] = ǫ2
d
∑

j=1

∂jjf(x) + o(ǫ2).

�

We can rewrite the definition of ∆ as

1

2d
∆f(x) = lim

ǫ→0

1

ǫ2









1

2d

∑

y∈Zd,|y|=1

f(x+ ǫy)



− f(x)



 .

The term in the inner brackets can be considered a kind of mean value

of f where the mean value is taken only in the coordinate directions.

This mean value depends on our choice of coordinate axes. The next

proposition shows that we can average over spheres as well and hence

the definition does not depend on the choice of axes.

Proposition 2.7. If f is C2 in a neighborhood of x, then

(2.11)
1

2d
∆f(x) = lim

ǫ→0

MV (f ;x, ǫ) − f(x)

ǫ2
.

Here MV (f ;x, ǫ) denotes the mean value of f on the sphere of radius

ǫ about x as in (2.7).

Proof. Assume for notational ease that x = 0 and f(x) = f(0) = 0.

If f is C2 in a neighborhood of 0, we can write

(2.12) f(y) = P2(y) + o(|y|2),
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where P2 denotes the second order Taylor polynomial of f about 0,

P2(y) = y · ∇f(0) +
1

2

∑

1≤k,l≤d

akl yk yl.

Here y = (y1, . . . , yd) and akl = ∂klf(0). Note that MV (yk; 0, ǫ) = 0

by symmetry. Similarly, if k 6= l, MV (ykyl; 0, ǫ) = 0. Therefore,

MV (P2; 0, ǫ) =
1

2

d
∑

k=1

akkMV (y2
k; 0, ǫ).

We could compute βk := MV (y2
k; 0, ǫ) by doing an integral, but we

will use a trick to avoid this computation. By symmetry βk is the

same for all k and

β1 + · · · + βd = MV (y2
1 + · · · + y2

d; 0, ǫ) = MV (ǫ2; 0, ǫ) = ǫ2.

Therefore, MV (y2
k; 0, ǫ) = ǫ2/d. Finally, since the error term in (2.12)

is o(|y|2),

lim
ǫ→0+

ǫ−2MV (f ; 0, ǫ) = lim
ǫ→0+

ǫ−2MV (P2; 0, ǫ)

=
1

2d

d
∑

k=1

akk =
1

2d
∆f(0).

�

The operator ∆ is called the Laplacian. In hindsight it might have

been more convenient to call 1
2∆ the Laplacian, but the terminology

is fixed. Most books define the Laplacian by (2.10) (which is why

the 1/2 does not appear), but it is more natural to think of the

Laplacian as being defined by the mean value property. Note that

∆f(x) = div[∇f(x)]. Another standard notation for the Laplacian is

∇2; one should think of this as

∇2 = ∇ · ∇ =

(

∂

∂x1
, . . . ,

∂

∂xd

)

·
(

∂

∂x1
, . . . ,

∂

∂xd

)

.

To add to the confusion, many analysts choose to define the Laplacian

to be −∆. There are advantages in this in that this makes it a

“positive operator”, see (2.46). Whether one multiplies by 1/2 or

puts in a minus sign, the condition ∆f(x) = 0 means the same thing.
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Theorem 2.8. A function in a domain U is harmonic if and only if

f is C2 with ∆f(x) = 0 for all x ∈ U .

We will discuss the proof of this in the remainder of the section.

This theorem will not be found in most books because they will define

f to be harmonic in U if ∆f(x) = 0. However, they will show that

such functions satisfy the mean value property so in either case one

needs to prove a theorem.

♦ If z = (z1, . . . , zd) ∈ R
d, then we write ddz for dz1 · · · dzd. Analysts

generally favor n for the dimension of the space while probabilists tend to use

d, reserving n as an index for sequences. One unfortunate consequence of using

d for dimension is that one has to write ddz where the two ds have different

meanings.

In fact, we have almost shown that f harmonic implies ∆f(x) = 0

for all x. What we have shown is that if a function f satisfies the

mean value property and it is C2, then it satisfies ∆f = 0. To finish

the proof we will show that if f is continuous and satisfies the mean

value property then it is automatically C∞! To show this we need the

fact (see Exercise 2.6) that there is a C∞ function φ on Rd satisfying

the following: φ is radially symmetric; φ(x) = 0 for |x| ≥ 1; φ(x) > 0

for |x| < 1; and
∫

Rd

φ(z) ddz = 1.

Let φ be such a function and let φǫ(x) = ǫ−d φ(x/ǫ). Then φǫ is

positive if and only if |x| < ǫ and
∫

Rd

φǫ(z) d
dz = 1.

Assume dist(x, ∂U) ≥ 2ǫ. Then if f is continuous and satisfies the

mean value property in U , we can use spherical coordinates and the

radial symmetry of φǫ to see that for |y − x| < ǫ,

f(y) =

∫

Rd

φǫ(z) f(y + z) ddz =

∫

Rd

φǫ(z − y) f(z) ddz.

Derivatives of f with respect to y can now be taken by differentiat-

ing the right hand side. The continuity of f is used to justify the

interchange of the integral and the derivative.
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♦ Often we want to interchange integrals and derivatives so let us discuss
when this can be justified. Suppose g(t, x), t ∈ R, x ∈ R

d is a continuous
function on R

d+1 for which the partial derivative ∂tg(t, x) exists and is a
continuous function on R

d+1. If V is a subset of R
d, we would like to write

(2.13) ∂t

Z

V

g(t, x) ddx =

Z

V

∂tg(t, x) ddx.

Let

gǫ(t, x) = ǫ−1 [g(t + ǫ, x) − g(t, x)],

so that

∂tg(t, x) = lim
ǫ→0

gǫ(t, x).

Using the definition of the derivative, we see that

∂t

Z

V

g(t, x) ddx = lim
ǫ→0

1

ǫ

»

Z

V

g(t + ǫ, x) ddx −
Z

V

g(t, x) ddx

–

= lim
ǫ→0

Z

V

gǫ(t, x) ddx,

with the derivative existing if and only if the limit on the right exists. In order
to show

lim
ǫ→0

Z

V

gǫ(t, x) ddx =

Z

V

∂tg(t, x) ddx,

it suffices to show that

lim
ǫ→0

Z

V

[gǫ(t, x) − ∂tg(t, x)]ddx = 0,

which in turn will follow if we can show that

(2.14) lim
ǫ→0

Z

V

|gǫ(t, x) − ∂tg(t, x)| ddx = 0.

Therefore (2.14) gives a sufficient condition to justify (2.13). If g has two
continuous derivatives in t, the Taylor theorem with remainder tells us that

|gǫ(t, x) − ∂tg(t, x)| ≤ ǫ

2
Kǫ(t, x),

where

Kǫ(t, x) = max {|∂ttg(s, x)| : |s − t| ≤ ǫ} .

Therefore, a sufficient condition to justify (2.13) is the existence of an ǫ > 0
such that

(2.15)

Z

V

Kǫ(t, x) ddx < ∞.

In all of the cases where we need to justify an interchange of an integral and a

derivative, we can prove (2.15). However, we do not always include the details.
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To finish the proof, we need to show that if f is C2 in a domain

U with ∆f(x) = 0 at every x, and x ∈ U with dist(x, ∂U) > ǫ, then

MV (f ;x, ǫ) = f(x).

In other words, f satisfies the mean value property. (We know by

(2.11) that f satisfies the mean value property “in the limit as ǫ

tends to zero”, but we want to show the actual mean value property.)

For ease, we will assume that f has compact support; to derive the

general case, use Exercise 2.7. Without loss of generality, we may

assume x = 0, f(0) = 0.

♦ A function f : R
d → R has compact support if there is a K < ∞ such

that f(x) = 0 for |x| > K.

The easiest way to establish the computation is by a direct cal-

culation. Let us write

MV (ǫ) = MV (f ; 0, ǫ) =

∫

|x|=1

f(ǫx) ds(x),

where now s represents normalized surface measure on the sphere of

radius 1. We know that MV (0) = 0. To show that MV (ǫ) = 0 for

all ǫ, it suffices to show that MV ′(ǫ) = 0. Differentiation gives

MV ′(ǫ) =

∫

|x|=1

d

dǫ
f(ǫx) ds(x) =

∫

|x|=1

∂rf(ǫx) ds(x),

where ∂r denotes differentiation in the radial direction. Using Green’s

theorem (Exercise 2.11), one can show that if f is harmonic, then

(2.16)

∫

|x|=1

∂rf(ǫx) ds(x) = 0.

♦ There are various versions of the fundamental theorem of calculus in
d-dimensions that go under the name of Stokes’ or Green’s theorem. Here we
need the following version. If U ⊂ R

d is a bounded, connected open set with
smooth boundary and F is a smooth vector field, then

Z

∂U

(F · n)(y) ds(y) =

Z

U

(divF )(x) ddx.
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Here s denotes (unnormalized) surface measure on ∂U and n denotes the

outward unit normal. If f is a function, then its (outward) normal derivative

on ∂U is given by ∇f · n.

We now discuss a probabilistic way of seeing this relation which

has the advantage of generalizing to mean values on sets other than

spheres. Let Wt be a Brownian motion starting at the origin and let

T = Tǫ = inf{t ≥ 0 : |Wt| = ǫ}

be the first time that Wt hits the sphere of radius ǫ about x. (Note

that since Wt is a continuous function, we can replace the word infi-

mum with the word minimum.) Then the radial symmetry of Brow-

nian motion implies that the distribution of WT is uniformly dis-

tributed on the sphere of radius ǫ, and hence

MV (f ; 0, ǫ) = E [f(WT )] .

We need to show

(2.17) E [f(WT )] = 0

This will follow from the following martingale property: for every

t <∞,

(2.18) E [f(WT∧t)] = 0.

The argument to go from (2.18) to (2.17) is essentially the same as

in the discrete Dirichlet problem so we skip the details. We will

concentrate on deriving (2.18). We will start by deriving the easier

relation E[f(Wt)] = 0 and for ease we assume f(W0) = 0 and choose

t = 1.

Let P2(y;x) denote the second order Taylor polynomial of f about

x and let

e(x, y) = f(y) − P2(y;x).

Since f is C2 with compact support, there is a function ǫ(δ) with

ǫ(0+) = 0 such that for all x, y,

|e(x, y)| ≤ ǫ(|x− y|) |x− y|2.

(See Exercise 2.5.)



70 2. Brownian Motion and the Heat Equation

For each n we write

f(W1) =

n
∑

m=1

[

f(Wm/n) − f(W(m−1)/n)
]

.

We can write

P2(y;x) = f(x)+ (y− x) · ∇f(x)+
∑

1≤j≤k≤d

ajk(x) (yj − xj) (yk − xk),

where ajk(x) = ∂jkf(x) = ∂kjf(x). Since ∆f ≡ 0, and f is C2, we

can see that
d
∑

j=1

ajj(x) (yj − xj) (yk − xk) = o(|y|2),

Hence, up to an error that is o(|y|2), f(W1) is the sum of the following

three terms:
n
∑

m=1

∇f(W(m−1)/n) ·
[

Wm/n −W(m−1)/n

]

,

n
∑

m=1

∑

1≤j<k≤d

ajk(W(m−1)/n) [W j
m/n −W j

(m−1)/n ] [W k
m/n −W k

(m−1)/n],

n
∑

m=1

e(W(m−1)/n,Wm/n).

Here we write the d-dimensional Brownian motion Wt = (W 1
t , . . . ,

W d
t ). Since ∇f(W(m−1)/n) depends on the Brownian motion only up

to time (m− 1)/n and Wm/n −W(m−1)/n is independent of this with

mean zero, we can see that

E
(

∇f(W(m−1)/n) ·
[

Wm/n −W(m−1)/n

])

= 0.

Similarly, if j < k, ajk(W(m−1)/n), W j
m/n −W j

(m−1)/n, and W k
m/n −

W k
(m−1)/n are independent with the last two having mean zero. There-

fore,

E

(

ajk(W(m−1)/n) [W j
m/n −W j

(m−1)/n ] [W k
m/n −W k

(m−1)/n]
)

= 0,

For the final term, we note that
∣

∣

∣

∣

∣

n
∑

m=1

e(W(m−1)/n,Wm/n)

∣

∣

∣

∣

∣

≤ ǫ(Rn)Qn
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where

Qn =

d
∑

j=1

n
∑

m=1

[W j
m/n −W j

(m−1)/n ]2,

and Rn = max{|Wm/n −W(m−1)/n| : m = 1, . . . , n}. We claim that

with probability one the right hand side converges to zero. Continuity

of the Brownian motion implies that Rn → 0. Also ǫ(Rn) is bounded

(why?) and hence E[ǫ(Rn)2) → 0. In the exercises (see Exercise 2.23)

we study Qn; in particular, E[Q2
n] is bounded in n. Therefore, using

the Cauchy-Schwarz inequality,

E[ǫ(Rn)Qn]2 ≤ E[ǫ(Rn)2] E[Q2
n] → 0.

In particular, E[f(W1)] = 0.

This argument might tempt the reader to write

f(W1) − f(W0) = lim
n→∞

n
∑

k=1

∇f(WTk−1
) · [WTk

−WTk−1
]

=

∫ 1

0

∇f(Wt) · dWt.

In fact, this can be made precise. This is an example of an Itô sto-

chastic integral.

2.3. Dirichlet problem

We will consider the problem of finding harmonic functions with pre-

scribed boundary values. We will restrict our discussion to bounded

domains and continuous boundary values.

Dirichlet problem for harmonic functions. Given a bounded

domain U ⊂ Rd and a continuous function F : ∂U → R, find an

extension of F to all of U such that:

(2.19) F : U → R is continuous;

(2.20) ∆F (x) = 0, x ∈ U.
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♦ If F represents temperature, then this gives the equilibrium tempera-

ture distribution on the interior if the temperature is fixed and known at the

boundary.

We first show that the solution to the Dirichlet problem, if it ex-

ists, is unique. We do this using the maximum principle which states

the following: if U is a bounded domain and F satisfies (2.19) and

(2.20), then the maximum value of F is obtained somewhere on the

boundary. This follows from continuity and the mean value property

as we now demonstrate. Since F is a continuous function on a com-

pact set U , F obtains its maximum somewhere. Suppose that the

maximum were obtained at an interior point x. Since the average

value about every sphere surrounding x in U is F (x), continuity tells

us that the function must take on the constant value F (x) on each

of these spheres. By letting the spheres grow, we can find a point

on the boundary whose value is F (x). Given the maximum principle

(and the corresponding minimum principle), we can see that if F1, F2

are two solutions to (2.19) and (2.20) such that F1 ≡ F2 on ∂U , then

F = F1 − F2 is a solution with F ≡ 0 on ∂U and hence F ≡ 0 on U .

♦ Here we use the linearity property of harmonic functions: if f, g are

harmonic and a, b are constants, then af+bg is harmonic. Many of the classical

equations of mathematical physics such as (2.20) and the heat equation which

we discuss below are linear partial differential equations. Most research in

differential equations today involves nonlinear equations.

♦ The above argument proves the stronger fact that if U is connected

and F obtains its maximum at an interior point, then it is constant.

To show existence, we make a good guess based on the discrete

analogue. Suppose Wt is a d-dimensional Brownian motion starting

at x ∈ U and let

TU = inf{t ≥ 0 : Wt 6∈ U} = min{t ≥ 0 : Wt ∈ ∂U}.
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Suppose F : ∂U → R is given. For x ∈ U , we define

(2.21) F (x) = E [F (WTU ) |W0 = x] .

In other words, we start a Brownian motion at x and let it run until

it hits the boundary and then observe the temperature. The temper-

ature at x is the average value of this temperature, averaged over all

Brownian paths. The rotational invariance of the Brownian motion

shows that F as defined in (2.21) satisfies the mean value property.

It is not difficult to show that F is continuous in U (continuity in U

is trickier — we discuss this below) and hence ∆F (x) = 0 for x ∈ U .

♦ Actually, a subtle fact about Brownian motion called the strong Markov

property is being used here. It is sufficiently subtle that we will ignore this issue

and let the reader read an advanced book on Brownian motion to find out what

this means.

Example 2.9. Let d = 1 and U = (0, R). Then ∂U = {0, R}. Let

F (x) = P{WTU = R |W0 = x}
be the probability that the Brownian motion starting at x reaches R

before reaching 0. Then F satisfies

F (0) = 0, F (R) = 1, F ′′(x) = 0, 0 < x < U.

The unique solution to this is F (x) = x/R. More generally, the

harmonic function on U with boundary values F (0), F (R) is

F (x) = F (0) +
x

R
[F (R) − F (0)] .

Example 2.10. Let d ≥ 2, 0 < r < R <∞ and let U be the annular

region

U = {x ∈ R
d : r < |x| < R}, ∂U = {|x| = r} ∪ {|x| = R}.

Let F (x) = P{|WTU | = R | W0 = x}. By rotational symmetry we

can see that F (x) = φ(|x|) for a one-variable function φ satisfying

φ(r) = 0, φ(R) = 1. Also,

∆F (x) =

d
∑

j=1

∂jjF (x) = 0, x ∈ U.
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If we write, F (x1, . . . , xd) = φ(|x|) = φ(
√

x2
1 + · · · + x2

d), then a chain

rule computation (Exercise 2.16) gives

(2.22) ∆F (x) =

d
∑

j=1

∂jjφ(|x|) = φ′′(|x|) +
(d− 1)

|x| φ′(|x|).

Therefore, we need to find the solutions to the one-variable equation

s φ′′(s) + (d− 1)φ′(s) = 0.

This is a first-order linear differential equation in φ′ and standard

methods give φ′(s) = c s1−d, which can be integrated again to yield

φ(s) = c1 log s+ c2, d = 2,

φ(s) = c1 s
2−d + c2, d ≥ 3.

Plugging in the boundary conditions φ(r) = 0, φ(R) = 1 gives

φ(|x|) =
log |x| − log r

logR− log r
, d = 2,

φ(|x|) =
r2−d − |x|2−d

r2−d −R2−d
, d ≥ 3.

The last example allows us to conclude some interesting facts

about the d-dimensional Brownian motion. Let us first consider d ≥ 3.

If r < |x| and we start a Brownian motion at x ∈ Rd, then the

probability that the Brownian motion ever reaches the ball of radius

r about the origin is given by

lim
R→∞

P{|WTU | = r |W0 = x}

= lim
R→∞

|x|2−d −R2−d

r2−d −R2−d
=

(

r

|x|

)d−2

< 1.

In particular, there is a positive probability that the Brownian motion

never returns to the ball. From this one can see (Exercise 2.8) that

with probability one

(2.23) lim
t→∞

|Wt| = ∞, d ≥ 3.

We say that Brownian motion for d ≥ 3 is transient.
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Now let us consider d = 2. We first ask the same question: if we

start at x with |x| > r, what is the probability that we ever reach the

sphere of radius r about the origin? This is given by

lim
R→∞

P{|WTU | = r |W0 = x} = lim
R→∞

logR− log |x|
logR− log r

= 1.

In other words, for every fixed positive r, the Brownian motion keeps

returning to the ball of radius r about the origin. Consider a second

question: what is the probability that the Brownian motion starting

at x 6= 0 ever reaches the origin? Assume for a moment that the

probability were positive. Then there would be an R such that the

probability of reaching the origin before getting distance R from the

origin is positive. But,

P{reach 0 before distance R} ≤ lim
r→0

P{|WTU | = r | W0 = x}

= lim
r→0

logR− log |x|
logR− log r

= 0.

Therefore with probability one, the Brownian motion never reaches

the origin. We say that Brownian motion for d = 2 is not point

recurrent but is neighborhood recurrent.

There is nothing special about the point zero in the argument.

The same argument shows that for all x ∈ R2, with probability one

the Brownian motion never visits x after time zero. (On the other

hand, it is obviously not true that with probability one, for every

x ∈ R2, x is never visited. The order of quantifiers is important!)

♦ The next example concerns harmonic functions in R
2. We identify R

2

with C, the set of complex numbers. This is not just for notational convenience.

The theory of complex functions is very important in the study of real-valued

harmonic functions in R
2.

Example 2.11. Let U = {x ∈ R2 : |x| < 1} = {reiθ ∈ C : 0 ≤ r <

1, 0 ≤ θ < 2π} be the two-dimensional unit disk whose boundary is

the unit circle ∂U = {eiθ : 0 ≤ θ < 2π}. A continuous function F :

∂U → R can be considered as a continuous function on R satisfying
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F (θ) = F (θ + 2π) for all θ. The harmonic function with boundary

value F is

F (x) = E [F (WτU ) |W0 = x] .

For each x ∈ U , there is a probability distribution on ∂U that cor-

responds to the distribution of the first visit to ∂U by a Brownian

motion starting at x. This distribution turns out to have a density

with respect to length, H(x, eiθ), i.e., if θ1 < θ2 < θ1 + 2π, the prob-

ability that the Brownian motion starting at x hits ∂U with angle

between θ1 and θ2 is given by
∫ θ2

θ1

H(x, eiθ) dθ.

The function H(x, eiθ) is known explicitly and is called the Poisson

kernel,

H(x, z) =
1 − |x|2

2π |z − x|2 , |x| < 1, |z| = 1.

Therefore,

(2.24) F (x) =

∫ 2π

0

F (eiθ)
1 − |x|2

2π |eiθ − x|2 dθ.

We have pulled the kernel H(x, z) out of a hat but given the formula

one can check directly that F defined as in (2.24) is harmonic in U

and F is continuous on U (see Exercise 2.9).

Example 2.12. There is a similar Poisson kernel if d ≥ 3, U =

{x ∈ Rd : |x| < 1}. Let s denote the surface measure of the sphere

{|x| = 1}. Then with respect to this measure, the Poisson kernel is

(2.25) H(x, z) =
1 − |x|2

Cd |z − x|d , |x| < 1, |z| = 1,

where Cd denotes the (d− 1)-dimensional surface measure of ∂U . In

other words, the solution to the Dirichlet problem with given function

F is

F (x) =

∫

|z|=1

F (z)H(x, z) ds(z).

It is a calculus exercise (Exercise 2.18) to verify that F defined as

above is harmonic in U and is continuous in ∂U . If V ⊂ ∂U , then the
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probability that a Brownian motion starting at x exits U at a point

in V is given by
∫

V

H(x, z) ds(z).

We end this section by asking the question: can the Dirichlet

problem be solved for any bounded domain U? Suppose U is a

bounded domain, and F is a continuous function on the boundary.

Ifwe define F in U by

(2.26) F (x) = E [F (WTU ) |W0 = x] ,

then this is a continuous function in U satisfying the mean value

property and hence is harmonic. This is the only candidate for the

solution, but it is not clear if F is continuous in U . In fact, this is

not always the case. For example suppose that U is the “punctured

unit disk”

U = {x ∈ R
2 : 0 < |x| < 1}, ∂U = {0} ∪ {x ∈ R

2 : |x| = 1}.
Suppose that we set F (0) = 0 and F (x) = 1 for |x| = 1. Then this is a

continuous function on ∂U . We have seen that with probability one, a

Brownian motion starting at x 6= 0, never hits the origin. Therefore,

if we define F in U by (2.26), we get F (x) = 1 for all x 6= 0, and F

is not continuous at 0. Of course, this example is bad because the

boundary is not connected. One might ask then, what if we force

∂U to be connected? In this case, in two dimensions the Dirichlet

problem always has a solution, but in more than two dimensions we

can still have problems (see Exercise 2.14).

We will not prove this, but we just mention that in order for

the Dirichlet problem to have a solution the domain U has to have a

certain property which can be stated roughly as “if y ∈ ∂U and the

Brownian motion starts in U near y, then with very high probability

the Brownian motion exits U near y”. Such a domain is said to have

a regular boundary.

2.4. Heat equation

We now consider the continuous analogue of the heat equation. We

start by considering the equation in all of Rd. Suppose that an initial
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temperature is given by f(x), x ∈ Rd, which we assume is a bounded,

continuous function. Similarly to the discrete case, we imagine the

temperature as being determined by a very large number of heat par-

ticles, all doing Brownian motions. Let u(t, x), t ≥ 0, x ∈ Rd denote

the temperature at x at time t which can be thought of (roughly)

as the density of heat particles at x at time t. On a very heuristic

level, we imagine that there are f(y) points starting at site y and

the fraction of them that are at x at time t is the probability that a

particle at y has moved to x. We would expect that this probability

would be the same as the probability that a particle moves from x to

y in time t. If we average over all possible y, we get

(2.27) u(t, x) = E [f(Wt) |W0 = x] .

Let us make this a little more precise. If Wt is a Brownian motion

in Rd starting at x, then for fixed t, Wt is a random variable with

(probability) density (function)

p(t, x, y) =
1

(2πt)d/2
e−

|y−x|2
2t .

Here t, x are fixed and p(t, x, y) is considered as a function of y. In

other words, the components of Wt − x are independent normal ran-

dom variables with mean zero and variance t. Symmetry is seen by

noting that p(t, x, y) = p(t, y, x). We can write (2.27) as

(2.28) u(t, x) =

∫

Rd

f(y) p(t, x, y) ddy =

∫

Rd

f(y) p(t, y, x) ddy.

The first equality is a restatement of (2.27) and the second equal-

ity more closely reflects our interpretation of the heat flow — the

density of heat particles that started at y and are at x at time t is

f(y) p(t, y, x).

We define u(0, x) = f(x) and u(t, x) for t > 0 by (2.27). It is not

difficult to show (Exercise 2.13) that

(2.29) u(0, x) = u(0+, x) := lim
t→0+

u(t, x).

♦ Mathematicians sometimes say that {p(t, 0, y) : t > 0} is an approxi-
mate δ-function. Heuristically, a delta function in R

d is a function δ satisfying
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the following:

δ(0) = ∞, δ(x) = 0, x > 0,

Z

Rd

δ(y)ddy = 1.

In particular, if f is a bounded continuous function

(2.30)

Z

Rd

f(y) δ(y − x) ddy = f(x).

As stated, this does not make mathematical sense, but there are a number

of ways to make this precise. One way is to think of the delta function as

p(0+, 0, y) and then (2.30) becomes (2.29).

We will now find the partial differential equation that u(t, x) sat-

isfies. First assume d = 1, and consider the right derivative with

respect to time. (To see that computing the right derivative suffices,

see Exercise 2.15.) For ease, assume that t = 0, x = 0, f(0) = 0.

Then,

lim
s→0+

u(s, 0)− f(0)

s
= lim

s→0+

E[f(Ws) |W0 = 0]

s
.

Assume that f is C2 and write the approximation by the second order

Taylor polynomial,

f(x) = f ′(0)x+
1

2
f ′′(0)x2 + o(x2), x→ 0.

Then

E[f(Ws)] = f ′(0) E[Ws] +
1

2
f ′′(0)E[W 2

s ] + o(W 2
s ).

But E[Ws] = 0,E[W 2
s ] = s and o(W 2

s ) = o(s). Hence, if we divide by s

and let s→ 0 we expect the limit to be f ′′(0)/2. A similar argument

for t > 0 gives the prediction

(2.31) ∂t u(t, x) =
1

2
∂xxu(t, x).

Some might not be happy with the level of rigor in this argument,

but that is not a problem because once we guess the equation we can

verify it directly by checking that

(2.32) u(t, x) =

∫ ∞

−∞
f(y)

1√
2πt

e−
(y−x)2

2t dy

satisfies (2.31) at least for t > 0. This is a straightforward computa-

tion provided that one justifies an interchange of a derivative and an
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integral (see the remark in Section 2.2). This will also hold at t = 0

for the right derivative if f is C2, but if f is only continuous we must

be content with (2.29).

The computation for d dimensions is similar so we just state it.

Suppose f is a bounded continuous function in Rd. Then u(t, x) as

defined in (2.28) satisfies the heat equation

(2.33) ∂tu(t, x) =
1

2
∆xu(t, x), t > 0,

with initial condition

(2.34) u(0, x) = u(0+, x) = f(x).

Here we write ∆x to indicate that the Laplacian is in the x variable

only. One can verify by direct differentiation that u satisfies (2.33).

In fact, although we will not prove it here, this is the unique solution

to (2.33) with initial condition (2.34).

2.5. Bounded domain

The solution of the heat equation in all of Rd is easy; in fact, we

could have just written down the solution (2.32) and verified that it

works. However, if we restrict to a bounded domain, it can be harder

to give a solution and for this it is useful to have the probabilistic

interpretation.

Suppose U ⊂ R
d is a bounded domain. Assume an initial tem-

perature f(x), x ∈ U is given, and let us fix the temperature to be

0 at the boundary at all times. We will assume that the boundary

is not too bad — at least that it is regular as described in Section

2.3. If we let u(t, x) = u(t, x;U) denote the temperature at point x

at time t, then u(t, x) satisfies the following:

u(0, x) = u(0+, x) = f(x), x ∈ U,

(2.35) u(t, x) = 0, x ∈ ∂U,

x 7→ u(t, x) is continuous on U for t > 0,

(2.36) ∂tu(t, x) =
1

2
∆xu(t, x), t > 0, x ∈ U.
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The derivation of the heat equation (2.36) is similar to that for the

case U = Rd. Essentially, if x ∈ U and t is very small, the effect of

the boundary on heat flow about x is minimal (and the effect goes to

zero as t goes to 0). Hence we get the same differential equation as

in the unbounded case. We note that the set of functions satisfying

(2.35) and (2.36) is a vector space.

We still have the interpretation of heat as being given by heat

particles doing Brownian motions, but these particles are destroyed

when they reach the boundary. Let Wt be one such Brownian motion,

let T = TU = inf{t : Wt 6∈ U}, and let p(t, x, y, U) denote the density

at y at time t assuming that W0 = x and that the particle has not

been killed by time t. To be more precise, if V ⊂ U , then

P{Wt ∈ V, T > t | W0 = x} =

∫

V

p(t, x, y, U) ddy.

The expression (2.27) becomes

u(t, x;U) = E [f(Wt) 1{T > t} |W0 = x]

=

∫

U

f(y) p(t, x, y, U) ddy.

The derivation of this equation uses p(t, x, y, U) = p(t, y, x, U). This

equality may not be as obvious as in the case of the entire plane, but

for any “path” from x to y staying in U , there is a corresponding path

from y to x staying in U obtained by reversal.

2.5.1. One dimension. Suppose d = 1, U = (0, π). We can solve

the heat equation exactly in terms of an infinite series of functions.

We start by looking for solutions of (2.35) and (2.36) of the form

u(t, x) = e−λt φ(x).

Such a function satisfies (2.36) if and only if

φ′′(x) = −2λφ(x),

which has general solution φ(x) = c1 sin(
√

2λx)+ c2 cos(
√

2λx). Im-

posing the boundary condition u(t, 0) = u(t, π) = 0 gives us the

following solutions

φk(x) = sin(kx), λk =
k2

2
, k = 1, 2, . . .
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Since linear combinations of solutions are solutions, we get a family

of solutions of the form

(2.37) u(t, x) =
∞
∑

k=1

ak e
−k2t/2 sin(kx).

At this point, we need to take some care. If all but a finite number of

the ak are zero, this is a finite sum and this gives a solution. Otherwise

we have to worry about convergence of the sum and whether the

infinite sum satisfies the heat equation. Let us ignore that problem

at the moment and do some formal calculations. If we plug in t = 0

we get

u(0, x) =
∞
∑

k=1

ak sin(kx).

If we want this to equal f , then we need to find coefficients ak such

that this holds. This is an example of a Fourier series. Continuing

the formal calculations, let us suppose that

(2.38) f(x) =

∞
∑

k=1

ak sin(kx)

and compute the coefficients ak. A simple calculation gives
∫ π

0

sin(jx) sin(kx) dx =

{

0, j 6= k

π/2, j = k
.

If we use the sum rule for integrals (and do not worry about the fact

that it is an infinite sum!), we see that
∫ π

0

f(x) sin(kx) dx =

∞
∑

j=1

∫ π

0

aj sin(jx) sin(kx) dx =
π

2
ak,

which gives

(2.39) ak =
2

π

∫ π

0

f(x) sin(kx) dx.

We now return to the convergence issue. Suppose we start with a

continuous function f and define ak as above. In what sense is (2.38)

true? In other words, if

(2.40) fn(x) =

n
∑

k=1

ak sin(kx),
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do the functions fn converge to f? Unfortunately, it is not true that

fn(x) → f(x) for every continuous f and every x. However, if we

change our definition of convergence, we do always have convergence.

♦ There are many different nonequivalent definitions of convergence of

functions. This is not just because mathematicians like to have many defini-

tions and like to prove theorems about them! Here, the notion of pointwise

convergence of functions would be very natural but convergence does not hold

for all functions. Choosing another notion of convergence allows all functions

to converge.

For every continuous f , fn as defined in (2.40) converges to f in

mean-square or in L2; this means

lim
n→∞

∫ π

0

[f(x) − fn(x)]2 dx = 0.

We will not give the full proof of this theorem, but in the proof one

derives Parseval’s identity (which is another form of the Pythagorean

theorem!) by justifying this calculation:

∫ π

0

f(x)2 dx =

∫ π

0

[ ∞
∑

k=1

ak sin(kx)

]2

dx

=

∞
∑

j=1

∞
∑

k=1

∫ π

0

aj ak sin(jx) sin(kx) dx

=

∞
∑

k=1

∫ π

0

a2
k sin2(kx) dx =

π

2

∞
∑

k=1

a2
k.

In particular,
∑

a2
k < ∞. This does not imply that

∑ |ak| < ∞.

However, it does imply that ak → 0, from which we can see that the

sum in (2.37) converges absolutely for each x if t > 0.

We can use intuition from Brownian motion to derive the heat

equation. Conversely, we can use solutions to the heat equation to

study the Brownian motion. Consider Brownian motion in U = (0, π)

killed when it reaches a boundary point. We can compute the density

of a Brownian particle starting at y assuming that it has not died.
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This corresponds to the formal initial condition

f(x) = δ(y − x).

The solution of the heat equation with this initial condition should

be the density p(t, y, x, U). Using the formal property of the delta

function, we get

∫ π

0

δ(y − x) sin(kx) dx = sin(ky).

Plugging into (2.39) gives ak = (2/π) sin(ky), and hence we get

p(t, y, x, U) =
2

π

∞
∑

k=1

e−k2t/2 sin(kx) sin(ky).

Note that
∣

∣

∣

∣

∣

∞
∑

k=2

e−k2t/2 sin(kx) sin(ky)

∣

∣

∣

∣

∣

≤
∞
∑

k=2

e−kt =
e−2t

1 − e−t
.

Hence as t→ ∞, the sum on the right hand side is dominated by the

k = 1 term,

p(t, y, x, U) ∼ 2

π
e−t/2 sin(x) sin(y), t → ∞.

Note that
∫ π

0

2

π
e−t/2 sin(x) sin(y) dx =

4

π
e−t/2 sin y.

Let us interpret this. If we start a Brownian motion at y, then the

probability at a very large time t, that the particle has not left (0, π)

is about (4/π) e−t/2 sin y. Given that it has not left the domain,

the probability density for where we expect the particle to be is

(1/2) sinx. Note that this last density does not depend on y —

at a very large time, the position of the particle given that it stays in

the domain is independent of the starting point. In other words, the

particle forgets its starting point. In the random walk case, we had a

similar result except there is something that the random walker does

not forget — whether its initial point is even or odd.
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2.5.2. Many dimensions. The same idea, separation of variables,

can be used to solve the heat equation in bounded domains U in

Rd. Again, one looks for solutions in a product form uj(t, x) =

e−λjt φj(x). This will give a solution satisfying the boundary con-

dition if

(2.41)
1

2
∆φj(x) = −λjφj(x), φj ≡ 0 on ∂U.

The function φj is called an eigenfunction for ∆ with Dirichlet bound-

ary conditions with eigenvalue −2λj. This leads to the following prob-

lem for each domain: can we find a complete family of eigenfunctions

satisfying (2.41)? In other words, can we find sufficiently many such

functions so that every initial condition f can be written as

(2.42) f(x) =

∞
∑

k=1

ak φk(x),

for appropriate constants ak?

Since heat is lost at the boundary, we do not expect to have any

solutions that grow with time — hence, we expect λj > 0. Since we

have put in a minus sign, λj is an eigenvalue for − 1
2∆. It turns out

that under very general conditions one can find such functions and

the eigenvalues can be ordered

λ1 < λ2 ≤ λ3 ≤ · · · ,

and the eigenfunctions φj can be chosen to be orthonormal

〈φj , φk〉 :=

∫

U

φj(x)φk(x) ddx = 0, j 6= k,

〈φj , φj〉 =

∫

U

φj(x)
2 ddx = 1.

(In the one-dimensional case, the orthonormal eigenfunctions were

φj(x) =
√

2/π sin(jx).) Every continuous function f on U can be

written as a generalized Fourier series (2.42) with

∞
∑

k=1

a2
k <∞,
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where the convergence in the sum is in the mean-square or L2 sense.

The coefficients are given by

ak = 〈f, φk〉 =

∫

U

f(x)φk(x) ddx.

The solution to the heat equation with initial condition f is

u(t, x) =

∞
∑

k=1

ak e
−λkt φk(x).

If we want a solution whose initial condition is the “delta function”

at y, then we choose

ak =

∫

U

δ(y − x)φk(x) ddx = φk(y),

and get

p(t, y, x;U) = p(t, x, y;U) =

∞
∑

k=1

e−λkt φk(x)φk(y).

The first equality uses the fact that for each path from x to y staying

in U there is a corresponding path from y to x staying in U obtained

by traversing backwards. If we start a Brownian motion at y, the

probability that it is still in U is asymptotic to c e−λ1t φ1(y) and the

probability density for the particle conditioned that it stays in U is

about c−1 φ1(x). Here c =
∫

U
φ1(x) d

dx.

Example 2.13. Many special functions arising in physics involve the

eigenfunctions of the Laplacian on a domain. Let U = {x ∈ R2 : |x| <
1}. We will look for solutions of the equation

1

2
∆φ(x) = −λφ(x), φ ≡ 0 on ∂U.

We use separation of variables to look for solutions of the form

φ(r, θ) = h(r) g(θ).

Then (see Exercise 2.10),

∆φ(r, θ) =
[

h′′(r) + r−1 h′(r)
]

g(θ) + r−2 h(r) g′′(θ).

If we want this to equal −2λh(r) g(θ), then

(2.43)
r2 h′′(r) + r h′(r) + 2 r2 λh(r)

h(r)
= −g

′′(θ)

g(θ)
.
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Note that the left hand side is a function of r and the right hand side

is a function of θ. In order for these to be equal, they must be equal

to a constant, say β. The function g is periodic with period 2π so we

can see that the only possible choices are βj = j2 and

φj(θ) = sin(jθ), ψj(θ) = cos(jθ).

(For j = 0, only the cosine function is nonzero.). Then h satisfies

h′′(r) +
1

r
h′(r) +

[

2λ− j2

r2

]

h(r) = 0.

We need to solve this equation with the boundary value h(1) = 0. If

we write v(s) = h(s/
√

2λ), this equation becomes

v′′(s) +
1

s
v′(s) +

(

1 − j2

s2

)

v(s) = 0.

There is only one solution of this equation (up to multiplicative con-

stant) that stays bounded as s→ 0+. It is called the jth order Bessel

function.

We consider a special case where we assume that the initial func-

tion f is radially symmetric. We look for functions of the form

φ(r, θ) = h(r). This requires the constant β = j2 in (2.43) to be

0, and hence v(s) = h(s/
√

2λ) satisfies the zero order Bessel equation

(2.44) v′′(s) +
1

s
v′(s) + v(s) = 0.

This is a second-order differential equation that has two linearly in-

dependent solutions. The solutions cannot be given in closed form.

There exists only one solution (up to multiplicative constant) that is

bounded and continuous at 0; it is unique if we specify v(0) = 1 and

can be given by (Exercise 2.20)

(2.45) v(x) = J0(x) :=
2

π

∫ π/2

0

cos(x cos θ) dθ.

This is the zeroth order Bessel function of the first kind.

By analyzing (2.45) (Exercise 2.21), one can show that the roots

of J0 form an increasing sequence

0 < r1 < r2 < r3 < · · ·
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We therefore have the functions hk(x) = J0(rkx) satisfy

h′′k(x) +
1

x
h′k(x) + r2k hk(x) = 0, hk(1) = 0.

In fact, the functions are orthogonal,
∫ 1

0

hj(x)hk(x) dx = 0, j 6= k.

If we set φk(x) = hk(|x|), we have

∆φk(x) = − r2k φk(x), φk ≡ 0 on ∂U.

This gives a complete set of radially symmetric eigenfunctions.

♦ The Bessel function J0(x) plays a similar role to that played by J(x) =

sin x for the usual Fourier series. The zeroes of J are the positive integers and

hence hk(x) = J(kx) = sin(kx).

♦ The eigenfunctions and eigenvalues for the Laplacian on a domain are

sometimes called the harmonics of the domain. The last example shows that

finding harmonics for domains leads to studying differential equations. The

Bessel functions are just some of the many “special functions” of mathematics

and physics that have arisen in studying the Laplacian and other operators on

domains. Much is known about such functions — see any book on special

functions to learn more.

To solve the heat equation on the domain U we need to find the

eigenfunctions and eigenvalues. Of particular importance is −λ1, the

eigenvalue of smallest absolute value. In fact, λ1 is always positive

(and hence all the eigenvalues are negative with other eigenvalues

having greater absolute value). As t→ ∞,

p(t, x, y;U) ∼ e−λ1tφ1(x)φ1(y).

Since the left hand side is positive, it had better be the case that

the eigenfunction φ1 can be chosen to be strictly positive (or strictly

negative). Let us look at this from a different perspective; for ease

assume that U has a smooth boundary. Then using Green’s identities
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(d-dimensional analogues of integration by parts), one can see for any

function f satisfying f ≡ 0 on ∂U ,

(2.46) 〈−∆f, f〉 = −
∫

U

f(x)∆f(x) dx =

∫

U

|∇f(x)|2 dx > 0.

(For this reason, −∆ is sometimes called a positive operator). We

then get

2λ1 = min
〈−∆f, f〉
〈f, f〉 ,

where the minimum is over all smooth functions f that equal zero on

∂U . This is the continuous analogue of Theorem 1.8. To show this,

one notes that by plugging in φ1, the eigenfunction associated to λ1,

we can see that the minimum on the right hand side is no more than

λ1. But for general f , we can write

f(x) =
∞
∑

j=1

ak φk

and we can see that we actually get equality.

♦ The Green’s identity used is
Z

U

f∆g(x) ddx =

Z

∂U

f(∇g · n)(y) ds(y) −
Z

U

(∇f · ∇g)(x)ddx.

2.6. More on harmonic functions

If d ≥ 2 and U is an open subset of Rd, then the set of harmonic

functions F on U is a an infinite dimensional vector space. The set

of such functions F that can be extended to U in a continuous way is

also an infinite dimensional subspace. Harmonic functions have some

nice properties. For example, the next proposition shows that the

derivatives can be bounded in terms of the maximum of the function.

Proposition 2.14. Suppose U is an open subset of Rd, and f is a

harmonic function on U . For x ∈ U , let

ρ(x) = dist(x, ∂U) = inf{|x− y| : y ∈ ∂U}.
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Then

|∇f(x)| ≤ d

ρ
sup
x∈U

|f(x)|.

Proof. Let M = supx∈U |f(x)| and assume M < ∞ (the result is

trivial if M = ∞). Let us first consider the case where U is the open

unit ball, x = 0, and f extends to a continuous function on U . Then

M = maxx∈U |f(x)|. We know that

f(x) =

∫

∂U

f(z)H(x, z) ds(z).

A calculation (Exercise 2.18) shows that |∇H(0, z)| = d/Cd. (Here

∇ refers to the gradient in the first component.) Therefore,

|∇f(0)| =

∣

∣

∣

∣

∇
∫

∂U

f(y)H(x, z) ds(z)
∣

∣

x=o

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂U

f(z)∇H(0, z) ds(z)

∣

∣

∣

∣

≤
∫

∂U

|f(z)| |∇H(0, z)| ds(z)

≤
∫

∂U

M
d

Cd
ds(z) = Md.

More generally, let r < ρ(x) and let

g(y) = f(x+ ry).

Then g is a continuous function on U that is harmonic in U . Also

maxy∈U |g(y)| ≤M . Therefore,

|∇g(0)| ≤ dM.

But ∇f(x) = r∇g(0). Therefore,

r |∇f(x)| ≤M.

Since this holds for all r < ρ(x), we have proved the proposition. �

We use this proposition to establish a continuous analogue of a

theorem we proved for discrete harmonic functions.

Proposition 2.15. The only bounded harmonic functions on Rd are

the constant functions.
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Proof. Suppose f : Rd → R satisfies supx |f(x)| = M < ∞. Then

applying the previous proposition to the domain U = {x : |x| < 2R}
we see that for every R <∞ and every |x| < R,

|∇f(x)| ≤ Md

R
.

Therefore ∇f(x) = 0 for all x and hence f is constant. �

Because the Poisson kernel for the unit ball is given explicitly

we can do many computations. For most domains, it is impossible

to give an explicit form for the kernel. For some domains, however,

separation of variables can be used effectively.

Example 2.16. Let U denote the rectangle

U = {(x, y) ∈ R
2 : 0 < x < 1, 0 < y < π}.

The boundary of U consists of four line segments. We will consider

harmonic functions F whose boundary values are zero on three of

those segments but may be nonzero on ∂∗ = {(1, y) : 0 ≤ y ≤ π}. An

easy calculation shows that if

φj(x, y) = sinh(jx) sin(jy),

then φj is harmonic in U (in fact, φj is harmonic in R2). Moreover,

if j is a positive integer, φj ≡ 0 on the three boundary segments

other than ∂∗. Suppose F is defined on ∂∗ by F (1, y) = g(y) where

g : [0, π] → R. Then we want a function of the form

F (x, y) =
∞
∑

j=1

aj sinh(jx) sin(jy),

where the constants aj have been chosen so that

g(y) =

∞
∑

j=1

aj sinh(j) sin(jy).

This is the Fourier series for g and we have seen that we should choose

aj sinh(j) =
2

π

∫ π

0

g(z) sin(jz) dz.
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To find the Poisson kernel, we choose the boundary value equal to

the “delta function” at y′, i.e.,

aj sinh(j) =
2

π
sin(jy′).

Hence,

H((x, y), (π, y′)) =
2

π

∞
∑

j=1

sinh(jx) sin(jy) sin(j y′)

sinh(j)
.

This is a continuous analogue of (1.25).

2.7. Constructing Brownian motion

In this section we discuss the construction of Brownian motion. It is

basically a two step process. Brownian motion is first constructed on

the countable dense subset D and then it is proved that the process

is uniformly continuous and hence can be extended to all times.

2.7.1. Existence of Brownian motion on D. We start by es-

tablishing a fact about sums of independent normal random vari-

ables. We write X ∼ N(µ, σ2) if X has a normal distribution with

mean µ and variance σ2. It is well known that if X,Y are inde-

pendent with X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ), then X + Y ∼

N(µX + µY , σ
2
X + σ2

Y ). Let X,Y be independent random variables

each N(0, 1/2), so that if Z = X+Y , then Z ∼ N(0, 1). Suppose the

value of Z is known, say Z = z. What can we say about X and Y ?

The joint density for (X,Y ) is
(

1
√

2π(1/2)
e−x2

) (

1
√

2π(1/2)
e−y2

)

=
1

π
e−(x2+y2).

The joint density for (X,Z) is

1

π
e−(x2+(z−x)2),

and the density for Z is

1√
2π

e−z2/2.
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The conditional density of X given Z = z is

(1/π)e−(x2+(z−x)2)

(1/
√

2π) e−z2/2
=

1
√

π/2
e−2(x− z

2 )2 .

This is the density for a normal random variable with mean z/2 and

variance 1/4. In other words, conditioned on the value of Z, X ∼
N(Z/2, 1/4). We can write

X =
Z

2
+
Z̃

2
,

where Z̃ ∼ N(0, 1) and is independent of Z. Similarly conditioned on

Z = z, Y ∼ N(Z/2, 1/4) and

Y =
Z

2
− Z̃

2
.

(Note that conditioned on Z = z, the random variables X and Y

are not conditionally independent!) We have essentially proved the

following proposition.

Proposition 2.17. Suppose X,Y are independent normal random

variables, each N(0, 1). If

Z =
1√
2
X +

1√
2
Y,

Z̃ =
1√
2
X − 1√

2
Y,

then Z, Z̃ are independent random variables, each N(0, 1).

We will construct Wq for q ∈ D. It suffices to define the random

variables J(k, n) as in (2.1). We assume that we have at our dis-

posal a countable number of independent normal random variables

Z1, Z2, . . .. Since the dyadics D are a countable set, we may assume

that the random variables Zq are actually indexed by q ∈ D. Our

definition of J(k, n) will be recursive. We start by defining

J(k, 0) = Zk, k = 1, 2, . . . .

We now assume that

J(k, n), k = 1, 2, . . .
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have been defined using only {Zq : q ∈ Dn} so that they are indepen-

dent N(0, 1) random variables. We then define

J(2k − 1, n+ 1) =
1√
2
J(k, n) +

1√
2
Z(2k+1)/2n+1 ,

J(2k, n+ 1) =
1√
2
J(k, n) − 1√

2
Z(2k+1)/2n+1 .

By repeated use of the proposition we see that

J(k, n+ 1), k = 1, 2, . . . ,

are independent N(0, 1) random variables. We define Wk/2n by

Wk/2n = 2−n/2
k
∑

j=1

J(j, n),

so that (2.1) holds.

2.7.2. Continuity of Brownian motion. LetWq, q ∈ D be a stan-

dard one dimensional Brownian motion and let Kn be as defined in

(2.3). In this section we prove the following.

Theorem 2.18. If n is a positive integer and a > 0,

(2.47) P

{

Kn ≥ a 2−n/2
}

≤ 4 · 2n

a
e−a2/2.

In particular, by setting a = 2
√
n, we see that

P

{

Kn ≥ 2
√
n 2−n/2

}

≤ 2√
n

(2/e2)n,

which gives (2.4).

Note that 2n/2Kn is the maximum of 2n random variables all

with the same distribution as

K̂ := sup{|Wq| : q ∈ D ∩ [0, 1]}.
The probability that the maximum of a collection of random variables

is greater than a number r is no more than the sum of the probabilities

that the individual random variables are greater than r. Hence to

prove (2.47), it suffices to show that

P

{

K̂ ≥ a
}

≤ 4

a
e−a2/2.
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Proposition 2.19. Suppose Wq, q ∈ D is a standard Brownian mo-

tion. Then for every a > 0,

P

{

K̂ > a
}

≤ 4P{W1 ≥ a} =
4√
2π

∫ ∞

a

e−x2/2 dx ≤ 4

a
e−a2/2.

Proof. The equality comes from the fact thatW1 has a normal distri-

bution with mean zero and variance one. The last inequality follows

from
∫ ∞

a

e−x2/2 dx ≤
∫ ∞

a

e−ax/2 dx =
2

a
e−a2/2,

and 2 <
√

2π. Therefore, we only need to prove the first inequality.

By symmetry it suffices to show that

P {sup{Wq : q ∈ D ∩ [0, 1]} > a} ≤ 2 P{W1 ≥ a}.

Also, if sup{Wq : q ∈ D ∩ [0, 1]} > a, then Wq > a for some q ∈
D ∩ [0, 1]. Therefore,

P {sup{Wq : q ∈ D ∩ [0, 1]} > a} ≤

lim
n→∞

P {max{Wq : q ∈ Dn ∩ [0, 1]} ≥ a} ,

and it suffices to show for each n,

(2.48) P
{

max{Wk/2n : k = 1, . . . , 2n} ≥ a
}

≤ 2P{W1 ≥ a}.

This looks complicated because we are taking the maximum of

many random variables. However, we can use the fact that if we are

greater than a at some time t then there is at least a 50% chance that

we are above a at the final time. We need to take a little care in the

argument; in order to avoid ambiguity, we consider the first time that

the value is at least a. Fix n and let Ek = Ek,n denote the event that

k/2n is the first such time, i.e.,

Wk/2n ≥ a, Wj/2n < a, j = 1, . . . , k − 1.

The events E1, E2, . . . , E2n are mutually exclusive (i.e., Ej ∩ Ek = ∅
for j 6= k) and their union is the event on the left hand side of (2.48).

The event Ek depends on Wj/2n for j = 1, . . . , k. In particular,
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the random variable W1 − Wk/2n is independent of the event Ek.

Therefore, for each k = 1, . . . , 2n,

P[Ek ∩ {W1 ≥ a}] ≥ P[Ek ∩ {W1 −Wk/2n ≥ 0}]
= P(Ek) P{W1 −Wk/2n ≥ 0}

≥ 1

2
P(Ek).

(The last inequality is an equality if k < 2n.) Therefore,

P{W1 ≥ a} =

2n
∑

k=1

P[Ek ∩ {W1 ≥ a}]

≥ 1

2

2n
∑

k=1

P(Ek)

=
1

2
P
{

max{Wk/2n : k = 1, . . . , 2n} ≥ a
}

.

This proves (2.48). �

It is often useful to have a similar result for d-dimensional Brow-

nian motion. Suppose Wt is a standard d-dimensional Brownian mo-

tion and Kn,K
∗
n are defined as before. The triangle inequality again

gives Kn ≤ K∗
n ≤ 3Kn. If Kn ≥ a, then the corresponding quantity

for at least one of the components must be at least a/
√
d. Hence

(2.47) implies the following.

Theorem 2.20. For a d-dimensional Brownian motion, if n is a

positive integer and a > 0,

P

{

2n/2K∗
n ≥ 3a

}

≤ P

{

2n/2Kn ≥ a
}

(2.49)

≤ d
4 · 2n

(a/
√
d)
e−

(a/
√

d)2

2

=
4 · 2n d3/2

a
e−

a2

2d .

2.8. Exercises

Exercise 2.1.
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• Suppose Wt, t ∈ D is a standard Brownian motion on the

dyadics. If n is an integer show that Ŵt = 2−n/2Wt2n is a

standard Brownian motion on the dyadics.

• Suppose Wt, t ∈ [0,∞) is a standard Brownian motion, a 6=
0 and Ŵt = aWt/a2 . Show that Ŵt is a standard Brownian

motion.

(In both cases you need to show that Ŵt satisfies the conditions to

be a Brownian motion.)

Exercise 2.2. Suppose Wt is a standard Brownian motion.

• Show that with probability one for every N < ∞ there is a

t > N with Wt = 0.

• Show that with probability one for every ǫ > 0 there is a

t ∈ (0, ǫ) with Wt = 0.

Exercise 2.3. Suppose Ur = {x ∈ Rd : |x| < r}. Suppose that F is a

continuous function on Ur that is harmonic in Ur. Let φ(x) = F (rx).

Show that φ is a harmonic function on U1.

Exercise 2.4. Suppose X = (X1, . . . , Xd) is a d-dimensional random

variable with density φ(x1, . . . , xd). Suppose that:

• φ is a radially symmetric function; in other words.

φ(x1, . . . , xd) = f(x2
1 + · · · + x2

d)

for some f : [0,∞) → (0,∞).

• X1, . . . , Xd are independent random variables.

Show that this implies that φ is of the form

φ(x1, . . . , xd) =
1

(2πσ2)d/2
exp

{

x2
1 + · · · + x2

d

2σ2

}

for some σ2 > 0.

Exercise 2.5. Suppose f : Rd → R is a C2 function and that there

is a K such that f(x) = 0 for |x| ≥ K. Let P2(x; y) denote the 2nd

order Taylor polynomial about y. Show that for every ǫ > 0 there is

a δ > 0 such that if |x− y| < δ,

|f(x) − P2(x; y)| ≤ ǫ |x− y|2.



98 2. Brownian Motion and the Heat Equation

(Note: δ may depend on f but it cannot depend on x, y. It will be use-

ful to recall that continuous functions on compact sets are uniformly

continuous.)

Exercise 2.6.

• Let

f(x) =

{

e−1/x, x > 0

0, x = 0.

Show that f has derivatives of all orders (this is trivial ex-

cept at x = 0) and f (k)(0) = 0 for all k.

• Use Taylor’s Theorem with remainder to conclude that for

all x > 0,

sup
0≤t≤x

|f (k)(t)| ≥ k! e−1/x

xk
.

• Define φ : Rd → [0,∞) as follows:

φ(x) =

{

0, |x| ≥ 1

e−1/(1−|x|2), |x| < 1
.

Show that φ is C∞.

Exercise 2.7. Suppose U is an open set and V is a compact subset of

U . Suppose f is a C2 function on U . Show that there is a C2 function

g on Rd such that g has compact support (for some K, g(x) = 0 for

|x| ≥ K) and g(x) = f(x) for x ∈ V .

Exercise 2.8. Verify (2.23).

Exercise 2.9. Suppose F is a continuous function on the unit circle

{|x| = 1} in R2 and let F be defined on the open disk U = {|x| < 1}
by (2.24).

• Show that F is harmonic in U .

• Show that F is continuous on ∂U .

Exercise 2.10. Suppose φ(r, θ) is a function on R2 written in polar

coordinates. Show that

∆φ = ∂rrφ+
1

r
∂rφ+

1

r2
∂θθφ.

Exercise 2.11. Use Green’s theorem to establish (2.16).
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Exercise 2.12. Prove the following Harnack inequality. Suppose

U = {x ∈ Rd : |x| < 1}. For every r < 1, there is a C = C(r, d) <∞
such that if F : U → (0,∞) is harmonic in U , then

C−1 F (0) ≤ F (x) ≤ C F (0), |x| ≤ r.

(The constant C may depend on r, d but does not depend on x or F .)

Exercise 2.13.

• Verify (2.29) if f is a bounded, continuous function.

• The boundedness assumption on f is more than what is

needed. Show that there is a β > 0 such that if f is contin-

uous at x and

lim
|y|→∞

e−β|y|2 f(y) = 0,

then (2.29) holds.

Exercise 2.14. Let Wt be a three-dimensional Brownian motion and

let

U = {x ∈ R
3 : |x| < 1} \ {(s, 0, 0); 0 ≤ s < 1}.

• Show that U is a connected domain and ∂U is connected.

• Show that if x ∈ U , then with probability one a Brownian

motion starting at x exits U on {|y| = 1}.
• Find a continuous function on ∂U for which the Dirichlet

problem does not have a solution.

Exercise 2.15. Suppose f : [0,∞) → R is a function such that the

right-derivative defined by

f ′
+(t) = lim

δ→0+

f(t+ δ) − f(t)

δ
,

exists at every point.

• Give an example with f continuous and f ′
+ discontinuous.

• Give an example with f ′
+ continuous and f discontinuous.

• Prove that if f, f ′
+ are both continuous, then f is contin-

uously differentiable and f ′(t) = f ′
+(t) using the following

hints.
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– By considering

g(t) = f(t) − f(0) −
∫ t

0

f ′
+(s) ds,

show that it suffices to prove this result with f ′
+ ≡ 0,

f(0) = 0.

– Assume f ′
+ ≡ 0, let ǫ > 0, and let

tǫ = inf{t > 0 : |f(t)| > t ǫ}.

Show that for every ǫ > 0, tǫ > 0.

– Show that if tǫ <∞, then |f(tǫ)| = tǫ ǫ.

– Show that if |f(t)| = tǫ, then there exists a δ > 0 such

that |f(s)| ≤ sǫ for t ≤ s ≤ t+ δ.

Exercise 2.16. Justify (2.22).

Exercise 2.17. Suppose Wt is a two-dimensional Brownian motion.

True or false: with probability one, Wt visits every open subset of R2.

Exercise 2.18. Suppose d ≥ 2 and U = {z ∈ R
d : |z| < 1} is the

open unit ball with boundary ∂U = {z ∈ R
d : |z| = 1}. Let s denote

surface measure so that the (d− 1)-dimensional area of ∂U is

Cd =

∫

U

1 ds(y).

(For example, C2 = 2π and C3 = 4π.) For x ∈ U, z ∈ ∂U let

H(x, z) =
1 − |x|2

Cd |x− z|d .

• Show that for fixed z ∈ ∂U , H(x, z) is a harmonic function

of x.

• Show that for fixed z ∈ ∂U ,

Cd |∇H(0, z)| = d.

• Show that for fixed x ∈ U ,
∫

∂U

H(x, z) ds(z) = 1.
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• Show that if F : ∂U → R is continuous, and we extend F

to U by

F (x) =

∫

∂U

F (z)H(x, z) ds(z),

then F is a harmonic function in U that is continuous on

∂U .

Exercise 2.19. Suppose d, k are positive integers. Show that there

exists a c = c(d, k) <∞ such that the following holds. Let f : U → R

be a harmonic function with |f(x)| ≤ 1 for x ∈ U . Then if D denotes

any kth order partial derivative,

|Df(x)| ≤ c ρ(x)−k,

where ρ(x) = dist(x, ∂U) = inf{|x− y| : y ∈ ∂U}.

Exercise 2.20.

• Verify that J0 as defined in (2.45) satisfies (2.44). Be sure

to justify the interchange of derivative and integral in the

calculation.

• Show that

J0(x) =

∞
∑

n=0

(−1)n

(n!)2 22n
x2n.

(Hint: the right hand side is absolutely convergent for all x

and hence derivatives can be taken by term-by-term differ-

entiation.)

Exercise 2.21. Show that there are an infinite number of positive

zeros of J0 all of which are isolated. (This is actually a very diffi-

cult exercise. Feel free to “cheat” by finding a book that discusses

asymptotics of Bessel functions.)

Exercise 2.22. Suppose X1, X2, . . . are independent random vari-

ables with mean zero. Suppose there existsK <∞ such that E[X4
j ] ≤

K for each j. Let Sn = X1 + · · · +Xn.

• Show that E[X2
jX

2
k ] ≤ K for all 1 ≤ j, k ≤ n.

• Show that E[S4
n] ≤ 3K n2.

• Show that P{|Sn| ≥ (3K)1/4 n7/8} ≤ n−3/2.
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• Prove that with probability one,

lim
n→∞

Sn

n
= 0.

This is an example of the strong law of large numbers.

Exercise 2.23. Let Wt be a standard Brownian motion. For each

positive integer n, let

Qn =

n
∑

j=1

(

Wj/n −W(j−1)/n

)2
.

Use the following outline to prove that with probability one,

lim
n→∞

Qn = 1.

Let

Yn,j = n
(

Wj/n −W(j−1)/n

)2 − 1.

• Show that E[Yn,j ] = 0.

• Show there exists a number K such that for all n, j,

E
[

Y 4
n,j

]

= K.

• Complete the proof using the ideas of Exercise 2.22.

Exercise 2.24. Let Wt be a standard Brownian motion. For each

positive integer n and each real t ≥ 0, let

Qn,t =
∑

1≤j≤nt

(

Wj/n −W(j−1)/n

)2
.

Show that with probability one, for each t,

(2.50) lim
n→∞

Qn,t = t.

(Note the order of the quantifiers. This is a stronger statement than

saying for each t, (2.50) holds with probability one.)

Exercise 2.25. Suppose Wt, Bt are independent standard Brownian

motions. Let

Qn =

n
∑

j=1

(

Wj/n −W(j−1)/n

) (

Bj/n −B(j−1)/n

)

.

Prove that with probability one,

lim
n→∞

Qn = 0.



2.8. Exercises 103

Exercise 2.26. In this exercise we will show that with probability

one, there is no t ∈ (0, 1) at which Wt is differentiable. The first two

steps are about functions.

• Suppose there exists a t ∈ [0, 1] at whichWt is differentiable.

Then, there exists t ∈ [0, 1], ǫ > 0, C <∞ such that

|Ws −Ws′ | ≤ C ǫ, if s, s′ ∈ [t− ǫ, t+ ǫ].

• Let

M(k, n) = max
{∣

∣

∣W k
n
−W k−1

n

∣

∣

∣ ,
∣

∣

∣W k+1
n

−W k
n

∣

∣

∣ ,
∣

∣

∣W k+2
n

−W k+1
n

∣

∣

∣

}

,

Mn = min{M(1, n), . . . ,M(n, n)}.
Suppose there exists a t ∈ [0, 1] at whichWt is differentiable.

Then there is a C < ∞ and an n0 < ∞ such that for all

n ≥ n0, Mn ≤ C/n.

We now use the fact that Wt is a Brownian motion.

• Find a constant c such that for all C and all k, n,

P{M(k, n) ≤ C/n} ≤
[

P{|W1/n| ≤ C/n}
]3 ≤

[

cC√
n

]3

.

• Show that this implies that for all C,

lim
n→∞

P{Mn ≥ C/n} = 1.

• Conclude that with probability one, Wt is nowhere differen-

tiable on t ∈ [0, 1].

Exercise 2.27. Let Kn be as in (2.49). Use this estimate to show

that for every β < 1/2 and every k <∞,

lim
n→∞

2βn
E
[

Kk
n

]

<∞.





Chapter 3

Martingales

3.1. Examples

A martingale is a mathematical model of a “fair game”. Before giving

the general definition, we will consider a number of examples.

3.1.1. Simple random walk. Let X1, X2, . . . be independent ran-

dom variables which equal ±1 each with probability 1/2. We can

consider them as the winnings (or losses) from a simple game where

one wins a dollar if a coin comes up heads and loses a dollar if it

comes out tails. The total winnings after n plays is

Sn = X1 + · · · +Xn, S0 = 0.

Of course, this is exactly the same as the simple random walk in

one dimension. Note that E[Sn+1 − Sn] = E[Xn+1] = 0. In fact, a

stronger fact is true. Since Xn+1 is independent of X1, . . . , Xn, the

conditional expected value stays the same even if one is given the

values of X1, . . . , Xn,

E [Sn+1 − Sn | X1, . . . , Xn] = 0.

3.1.2. Simple random walk with betting. Let X1, X2, . . . be as

above, but suppose that at each time n we are allowed to place a

bet, Bn on the outcome of the nth game. We allow Bn to be nega-

tive which is equivalent to betting that the coin will come up tails.

105
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Then the winnings derived from the nth game is BnXn and the total

winnings by time n is

Wn =
n
∑

j=1

Bj Xj , W0 = 0.

In order to be fair, we are required to make our choice of bet Bn

before seeing the result of the nth flip. However, we will allow the

bet to depend on the previous results X1, . . . , Xn−1. Then Bn will

be some function φ(X1, . . . , Xn−1) (B1 will be a constant). Let us

consider the conditional expectation

E [BnXn | X1, . . . , Xn−1] .

This notation means: we first observe X1, . . . , Xn−1 and then take

the “best guess” for BnXn given this information. For each possible

set of observations there is a best guess, and hence this conditional

expectation should be a function F (X1, . . . , Xn−1). Given the values

X1, . . . , Xn−1, we see that BnXn equals ±F (X1, . . . , Xn−1) each with

probability 1/2. In particular, the conditional expectation equals

zero,

E [BnXn | X1, . . . , Xn−1] = 0.

This is the martingale property.

Let us write this property slightly differently. Let Fn denote the

“information” available at time n. Then

E[Wn | Fn−1] = E[Wn−1 +Bn Xn | Fn−1]

= E[Wn−1 | Fn−1] + E[BnXn | Fn−1] = Wn−1.

Here we have used some properties of conditional expectation that we

will discuss in more detail below. The second inequality follows from

linearity and the third equality follows from the previous paragraph

and the fact that Wn−1 is completely determined by Fn−1.

One interesting choice for φ is called the martingale betting strat-

egy and is a well known way of “beating a fair game”. In order to

guarantee winning, one keeps doubling one’s bet until one is lucky

enough to win. This corresponds to B1 = 1 and for n > 1,

Bn =

{

2n−1 if X1 = X2 = · · · = Xn−1 = −1

0 otherwise .
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Note that for this strategy, the probability distribution of the win-

nings Wn is given by

(3.1) P{Wn = 1 − 2n} = 2−n, P{Wn = 1} = 1 − 2−n.

In particular,

E[Wn] = (1 − 2−n) P{Wn = 1 − 2n} + 1 P{Wn = 1} = 0.

Even though this strategy guarantees that one will eventually win,

the expected winnings up to any finite time is zero. With probability

one,

W∞ := lim
n→∞

Wn = 1.

In particular,

lim
n→∞

E[Wn] 6= E

[

lim
n→∞

Wn

]

.

3.1.3. A problem in statistics. Suppose X1, X2, . . . are indepen-

dent random variables taking values in {0, 1} with

P{X1 = 1} = 1 − P{X1 = 0} = θ.

Suppose that we do not know the value of θ, but we observe X1,

. . . , Xn. Can we determine θ? This is an example of a problem in

statistics: to determine the distribution given some data. Note the

following.

• If we only observe a finite number of data pointsX1, . . . , Xn,

we cannot determine θ with 100% assurance. Indeed, for any

0 < θ < 1, the probability of seeing a particular sequence of

points X1, . . . , Xn is

(3.2)

(

n

k

)

θk (1 − θ)n−k > 0,

where k = X1 + · · · +Xn denotes the number of 1’s in the

sequence X1, . . . , Xn.

• If somehow we could observe the infinite sequence X1, X2,

. . ., we would be able to determine θ. Indeed, the law of

large numbers states that with probability one

θ = lim
n→∞

X1 + · · · +Xn

n
.
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Since we cannot practically observe the infinite sequence, we want to

estimate θ as well as possible from the given data.

There are a number of approaches that statisticians use all of

which make some assumptions on the observed data. The Bayesian

approach is to model the (unknown) success probability as a random

variable θ with a given density and then to update our density using

the data.

♦ In fact, we have already made the assumptions that the different data

points are independent and that the success probability θ does not change with

time. For real data, one would need to worry about testing these assumptions.

However, we will simplify our discussion by assuming that this is given.

Since we have no prior knowledge of θ, we might start by assuming

that θ is chosen uniformly over the range [0, 1], i.e., that at time 0

the density of θ is that of a uniform random variable,

f0(x) = 1, 0 < x < 1.

Given X1, . . . , Xn, the probability that we observe this data given a

particular value of θ is given by (3.2). By a form of the Bayes rule,

the conditional density at time n given that X1 + · · · + Xn = k is

given by

fn(x | k) =

(

n
k

)

xk (1 − x)n−k

∫ 1

0

(

n
k

)

yk (1 − y)n−k dy

= (n+ 1)

(

n

k

)

xk (1 − x)n−k, 0 < x < 1.

The conditional expectation of θ given X1 + · · · +Xn = k is
∫ ∞

0

x fn(x | k) dx =

∫ x

0

(n+ 1)

(

n

k

)

xk+1 (1 − x)n−k dx(3.3)

=
(n+ 1)

(

n
k

)

(n+ 2)
(

n+1
k+1

)

=
k + 1

n+ 2
.

Note that as n → ∞ this looks like k/n; however, it is not exactly

equal. This is because there is a lingering effect from the fact that we
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assumed that the a priori distribution was the uniform distribution

(note that if k = n = 0, then the expected value is 1/2.)

♦ In updating the density at time n, we are allowed to use all of the

information in X1, . . . , Xn. For this model, the only thing that is relevant

for the updating is the sum X1 + · · · + Xn. For this reason, the quantity

X1 + · · · + Xn is called a sufficient statistic for this model.

Another question we can ask is: given X1, . . . , Xn = k what is

the probability that Xn+1 = 1? Again, given the value of θ, we know

that the probability is θ and hence

P{Xn+1 = 1 | X1 + · · · +Xn = k} =

∫ 1

0

x fn(x | k) dx =
k + 1

n+ 2
.

This is the same transitions as one would get from a process called

Polya’s urn. Suppose an urn contains red and green balls. At time

zero there is one ball of each type. At each integer time n a ball is

chosen at random from the urn; the color is checked; and then the

ball is returned to the urn along with another ball of the same color.

If we let Yn + 1 denote the number of red balls at time n, then the

number of green balls is (n− Yn) + 1 and

P {Yn+1 = k + 1 | Yn = k} =
k + 1

n+ 2
,

E[Yn+1 | Yn = k] = k

[

1 − k + 1

n+ 2

]

+ (k + 1)
k + 1

n+ 2
= k +

k + 1

n+ 2
.

Let Mn = (Yn + 1)/(n+ 2) denote the fraction of red balls at time n.

Then

(3.4) E [Mn+1 | Yn = k] = E

[

Yn+1 + 1

n+ 3
| Yn

]

=

k + k+1
n+2 + 1

n+ 3
=
k + 1

n+ 2
= Mn.

Returning to the statistics model, let

Nn = E[θ | X1, . . . , Xn] = E[θ | Fn],
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where again we use Fn for the information in X1, . . . , Xn. Note that

Nn is determined by the values X1, . . . , Xn; in fact, (3.3) states that

Nn =
X1 + · · · +Xn + 1

n+ 2
.

The computation in (3.4) implies that {Nn} satisfies the martingale

property

E[Nn+1 | Fn] = Nn.

3.1.4. A random Cantor set. The Cantor set A ⊂ [0, 1] is defined

as

A =
∞
⋂

n=0

An,

where A0 ⊃ A1 ⊃ A2 ⊃ · · · are defined as follows: A0 = [0, 1],

A1 = [0, 1/3]∪ [2/3, 1],

A2 =

[

0,
1

9

]

∪
[

2

9
,
1

3

]

∪
[

2

3
,
7

9

]

∪
[

8

9
, 1

]

,

and recursivelyAn+1 is obtained from An by removing the open “mid-

dle third” interval from each of the intervals in An. Note that An is

the disjoint union of 2n closed intervals each of length 3−n.

We will construct a similar, but more complicated object, that we

call a random Cantor set. There will be two parameters: k a positive

integer greater than 1 and p ∈ (0, 1). Again, we choose A0 = [0, 1]

and we will let

A =
∞
⋂

n=0

An,

for suitably chosen An. To define A1, we start by dividing [0, 1] into

k equal intervals
[

0,
1

k

]

,

[

1

k
,
2

k

]

, . . . ,

[

k − 1

k
, 1

]

.

Independently for each of these intervals we decide to retain the in-

terval with probability p and to discard the interval with probability

1 − p. This gives us a random set A1 which is a union of intervals of

length k−1; the interiors of the intervals are disjoint. Let Y1 denote

the number of such intervals so that A1 is the union of Y1 inter-

vals of length k−1. Once A1 is determined, we similarly split each

of these Y1 intervals into k pieces each of length k−2. For each of
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these smaller intervals, we retain the interval with probability p and

discard the interval with probability 1 − p. All of these decisions are

made independently. Then A2 is the union of Y2 intervals of length

k−2. Recursively, we define An+1 from An by retaining each interval

of length k−(n+1) in An independently with probability p.

Because we are choosing randomly, for each n > 0, there is a

positive probability that An = ∅. However, by compactness we know

that one of two things happens:

• There is a finite n for which An = ∅;
• A 6= ∅.

The process Yn is sometimes called a branching process or Galton-

Watson process. It is a simple stochastic model for population growth

if we view Yn as the number of individuals in the nth generation of a

population. The (asexual) reproduction rule is that each individual

in the nth generation has a random number of offspring j where the

probability of j offspring is

(3.5) pj =

(

k

j

)

pk (1 − p)k−j .

(This is the binomial distribution with parameters p and k. One

can also define branching processes with other distributions for the

offspring process, but this is the distribution that corresponds to the

random Cantor set.) Let µ, σ2 denote the mean and variance of the

distribution (3.5); it is well known that

µ = kp, σ2 = kp(1 − p).

The conditional distribution of Yn+1 given Yn = m is not easy to write

down explicitly. However, the construction shows that is should be

the distribution of the sum of m independent random variables each

with distribution (3.5). In particular,

(3.6) E(Yn+1 | Yn = m) = mµ, Var(Yn+1 | Yn = m) = mσ2.

♦ We are using the fact that in order to determine the distribution of

Yn+1 given all the information up to time n, the only relevant information is

Yn, the number of individuals in the nth generation. Note, however, if we
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are interested in the set An+1, we need to know the set An which cannot be

determined only from the information in Yn, or even from Y0, Y1, . . . , Yn.

Let Mn = µ−n Yn. Then (3.6) implies the martingale property

E [Mn+1 | Fn] = E
[

µ−n−1 Yn+1 | Yn

]

= µ−n−1 µYn = Mn.

3.2. Conditional expectation

Although we have already computed the conditional expectation in-

formally in our examples, it is useful to make this concept more pre-

cise. Suppose that X1, X2, . . . is a sequence of random variables. We

write Fn as a shorthand for the information available in X1, . . . , Xn.

We are assuming that information is never lost. By convention, F0

will be “no information”. If Y is a random variable with E[|Y |] <∞,

then the conditional expectation E(Y | Fn) is the best guess for

Y given the information in Fn. Since F0 contains no information,

E(Y | F0) = E[Y ].

♦ We use the “blackboard bold” notation E for expectations (which

are numbers), but we use E for conditional expectations which are random

variables (since their values depend on X1, . . . , Xn). We hope that this makes

the concept easier to learn. However, most texts use the same typeface for

both expectation and conditional expectation.

Let us list some of the properties that the conditional expectation

has.

• The random variable E(Y | Fn) is a function of X1, . . . , Xn.

For each possible value for the random vector (X1, . . . , Xn), there is

the conditional expectation given that value. We say that E(Y | Fn)

is Fn-measurable. When computing E(Y | Fn) we treat X1, . . . , Xn

as constants and then in the end have an expression in terms of

X1, . . . , Xn.
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• To say that Y is Fn-measurable means that if we treat

X1, . . . , Xn as constants, then Y is a constant. Hence, if

the random variable Y is Fn-measurable,

E(Y | Fn) = Y.

Expectation is a linear operation, and this is still true for conditional

expectation,

• If Y, Z are random variables and a, b are constants, then

E(aY + bZ | Fn) = aE(Y | Fn) + bE(Z | Fn).

We can generalize this. If Z is Fn-measurable, then we can treat Z

like a constant. This implies the following.

• If Z is Fn-measurable, then

(3.7) E(ZY | Fn) = Z E(Y | Fn).

The conditional expectation E(Y | Fn) is a random variable that

depends on the value of X1, . . . , Xn. Hence, we can consider E[E(Y |
Fn)]. This can be considered as the operation of first averaging over

all the randomness other than that given by X1, . . . , Xn and then

averaging over the randomness in X1, . . . , Xn. This two stage process

should give the same result as that given by averaging all at once,

therefore

• E [E(Y | Fn)] = E[Y ].

Let us combine the last two properties. Suppose V is an event that

is Fn-measurable, i.e., an event that depends only on the values

of X1, . . . , Xn. Then the indicator random variable 1V is an Fn-

measurable random variable and (3.7) implies that E(1V Y | Fn) =

1V E(Y | Fn). Taking expectations of both sides, we get the following.

• If V is an Fn-measurable event,

(3.8) E [1V Y ] = E [1V E(Y | Fn)] .

At this point, we have given many of the properties that we expect

conditional expectation to satisfy, but we have not given a formal

definition. It turns out that (3.8) is the property that characterizes

the conditional expectation.
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Definition 3.1. The conditional expectation E(Y | Fn) is the unique

Fn-measurable random variable such that (3.8) holds for each Fn-

measurable event V .

In order to show this is well defined, we must show that there ex-

ists a unique such Fn-measurable random variable. To show unique-

ness, suppose that W,Z were two Fn-measurable random variables

with

E [1V W ] = E [1V Y ] = E [1V Z] .

Then for every Fn-measurable event V , we have

E [(W − Z) 1V ] = 0.

If we apply this to the events {W − Z > 0} and {W − Z < 0}
we can see that these events must have probability zero and hence

P{W = Z} = 1. (This uniqueness up to an event of probability

zero is how we define uniqueness in this definition.) Existence takes

more work and generally is established making use of a theorem from

measure theory, the Radon-Nikodym theorem. We will just assume

the existence in this book. In many cases, we will be able to give

the conditional expectation explicitly so we will not need to use the

existence theorem.

For a rigorous approach to conditional expectation, one needs to

verify all the bulleted properties for the conditional expectation from

our definition. This is not difficult. There are two other properties

that will be important to us. First, if Y is independent of Fn, then

any information about X1, . . . , Xn should be irrelevant.

• If Y is independent of X1, . . . , Xn, then

E(Y | Fn) = E[Y ].

To justify this from the definition note that E[Y ] is Fn-measurable

(E[Y ] is a constant random variable) and if V is Fn-measurable, then

Y and 1V are independent. Hence,

E [1V Y ] = E [1V ] E [Y ] = E [1V E [Y ]] .

♦ When we say Y is independent of X1, . . . , Xn (or, equivalently, inde-

pendent of Fn) we mean that none of the information in X1, . . . , Xn is useful
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for determining Y . It is possible for Y to be independent of each of the Xj

separately but not independent of X1, . . . , Xn (Exercise 3.1).

One final property is a “projection” property for conditional ex-

pectation.

• If m < n,

E (E(Y | Fn) | Fm) = E (Y | Fm) .

We use the definition to verify this. Clearly, the right hand side is

Fm-measurable, so we need to show that for all Fm-measurable events

(3.9) E [E(Y | Fn) 1V ] = E [E(Y | Fm) 1V ] .

We leave this as Exercise 3.2.

We define the conditional variance in the natural way

Var[Y | Fn] = E
(

(Y − E(Y | Fn))2 | Fn

)

.

By expanding the square and using linearity and (3.7), we get the

usual alternative formula for the conditional variance,

Var[Y | Fn] = E(Y 2 | Fn) − [E(Y | Fn)]
2
.

If E[Y 2] <∞, the conditional variance is well defined.

3.3. Definition of martingale

Definition 3.2. If X0, X1, X2, . . . and M0,M1,M2, . . . are sequences

of random variables, then {Mn} is called a martingale with respect

to {Xn} if E[|Mn|] < ∞ for each n, each Mn is Fn-measurable, and

for all n,

(3.10) E (Mn+1 | Fn) = Mn.

Here Fn denotes the information in X0, X1, . . . , Xn.

The projection rule for conditional expectation shows that if Mn

is a martingale, then

E [Mn+2 | Fn] = E (E(Mn+2 | Fn+1) | Fn) = E(Mn+1 | Fn) = Mn,

and similarly for all n < m,

E(Mm | Fn) = Mn.
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In particular, E(Mn | F0) = M0 and

E [Mn] = E [E(Mn | F0)] = E[M0].

A number of examples were given in Section 3.1. For another,

consider a time homogeneous, Markov chain on a finite or countably

infinite state space S. In other words, we have random variables

Y0, Y1, Y2, . . ., taking values in S, such that

P{Yn+1 = y | Y0, . . . , Yn} = P{Yn+1 = y | Yn} = p(Yn, y).

Here p : S × S → [0, 1] are the transition probabilities. Suppose

f : S → R is a function. Then if Fn denotes the information in

Y0, . . . , Yn,

E(f(Yn+1) | Fn) = E(f(Yn+1) | Yn) =
∑

y

p(Yn, y) f(y).

The condition on f so that Mn = f(Xn) is a martingale is that the

function is harmonic with respect to the Markov chain which means

that at every x,

(3.11) f(x) =
∑

y

p(x, y) f(y).

If the condition (3.11) holds only for a subset S1 ⊂ S, then we can

guarantee that f(Mn) is a martingale if we change the Markov chain

so it does not move once it leaves S1, i.e, p(y, y) = 1 for y ∈ S \ S1.

This shows that there is a very close relationship between martingales

and harmonic functions.

A function f is called subharmonic or superharmonic if (3.11) is

replaced by

f(x) ≤
∑

y

p(x, y) f(y),

or

f(x) ≥
∑

y

p(x, y) f(y),

respectively. Using this as motivation, we define a process to be a

submartingale or supermartingale if (3.10) is replaced by

E(Mn+1 | Fn) ≥Mn,

or

E(Mn+1 | Fn) ≤Mn,
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respectively. In other words, a submartingale is a game in one’s favor

and a supermartingale is an unfair game.

♦ The terminology can be confusing. The prefix “sub” is used for pro-

cesses that tend to get bigger and “super” is used for processes that tend to

decrease. The terminology was chosen to match the definitions of subharmonic

and superharmonic.

3.4. Optional sampling theorem

The most important result about martingales is the optional sampling

theorem which states that under certain conditions “you can’t beat

a fair game”. We have already given a “counterexample” to this

principle in the martingale betting strategy so we will have to be

careful in determining under what conditions the result is true.

Our first result states that one cannot make a game in one’s

favor (or even against one!) in a finite amount of time. Suppose

M0,M1, . . . is a martingale with respect to X0, X1, . . .. We think of

Mn −Mn−1 as the winnings on the nth game of a fair game. Before

the nth game is played, we are allowed to decide to stop playing. The

information in Fn−1 may be used in making the decision, but we are

not allowed to see the result of the nth game. More mathematically,

we say that a stopping time is a random variable T taking values in

{0, 1, 2, . . .} such that the event {T = n} is Fn-measurable. Recalling

that T ∧ n = min{T, n}, we see that Mn∧T equals the value of the

stopped process at time n,

Mn∧T =

{

Mn if T > n,

MT if T ≤ n.

Proposition 3.3. If M0,M1, . . . is a martingale and T is a stopping

time each with respect to X0, X1, . . ., then the process Yn = MT∧n is

a martingale. In particular, for each n, E[MT∧n] = E[M0].

Proof. Using the indicator function notation, we can write

MT∧n =

n−1
∑

j=0

Mj 1{T = j} +Mn 1{T ≥ n}.
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In other words, if we stop before time n we get the value when we

stop; otherwise, we get the value at time n. Then,

MT∧(n+1) −MT∧n = Mn+1 1{T ≥ n+ 1} −Mn 1{T ≥ n+ 1}
= [Mn+1 −Mn] 1{T > n}.

The event {T > n} which corresponds to not stopping by time n is

Fn-measurable since the decision not to stop by time n uses only the

information in Fn. Hence, by (3.8),

E ([Mn+1 −Mn] 1{T > n} | Fn) =

1{T > n}E (Mn+1 −Mn | Fn) = 0.

�

We will now consider the question: for which martingales and

stopping times can we conclude that the game is fair in the sense that

E[MT ] = E[M0]? The last proposition shows that this is the case if T

is bounded with probability one, for in this case MT = MT∧n for all

large n. Let us try to prove the fact and on the way try to figure out

what assumptions are needed (the martingale betting strategy tells

us that there certainly need to be more assumptions).

♦ In mathematics texts and papers, theorems are stated with certain

assumptions and then proof are given. However, this is not how the research

process goes. Often there is a result that one wants, one writes a proof, and

in the process one discovers what assumptions are needed in order for the

argument to be valid. We will approach the optional sampling theorem from

this research perspective.

Suppose M0,M1, . . . is a martingale with respect to X0, X1, . . .

and T is a stopping time. Assume that we will eventually stop,

(3.12) P{T <∞} = 1.

This is a weaker assumption than saying there is a K such that P{T ≤
K} = 1. The martingale betting strategy satisfies (3.12) since the

probability that T ≤ n is the same as the probability that one has

not lost the game n times in a row, which equals 1 − 2−n. Hence

P{T <∞} = lim
n→∞

P{T ≤ n} = 1.
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For each n, note that

MT = MT∧n +MT 1{T > n} −Mn 1{T > n}.
By Proposition 3.3, we know that E[MT∧n] = E[M0]. So to conclude

that E[M0] = E[MT ] it suffices to show that

(3.13) lim
n→∞

E [MT 1{T > n}] = 0,

and

(3.14) lim
n→∞

E [Mn 1{T > n}] = 0.

Let us start with (3.13). Note that with probability one, 1{T >

n} → 0; this is another way of stating (3.12). This is not quite enough

to sufficient to conclude (3.13), but we can conclude it if E [|MT |] <∞
for then we can use the dominated convergence theorem. In the case

of the martingale betting strategy, WT ≡ 1, so E[WT ] <∞.

The equation (3.14) is trickier. This is the one that the martingale

betting strategy does not satisfy. If one has lost n times in a row,

Wn = 1 − 2n. This happens with probability 2−n and hence

E [Wn 1{T > n}] = [1 − 2n] 2−n → −1.

We will make (3.14) an assumption in the theorem which we have

now proved.

Theorem 3.4 (Optional Sampling Theorem). Suppose M0 ,M1, . . .

is a martingale and T is a stopping time both with respect to X0, X1,

. . .. Suppose that P{T < ∞} = 1, E [|MT |] < ∞, and (3.14) holds.

Then,

E[MT ] = E[M0].

3.4.1. Gambler’s ruin estimate. Suppose Sn is one-dimensional

simple random walk starting at the origin as in Section 3.1.1. Suppose

j, k are positive integers and let

T = min{n : Sn = −j or k}.
It is easy to check that P{T <∞} = 1, and

E [ST ] = −j P{ST = −j} + k P{ST = k}
= −j [1 − P{ST = k}] + k P{ST = k}
= −j + (j + k) P{ST = k}.
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Since ST∧n is bounded, it is easy to see that it satisfies the conditions

of the optional sampling theorem, and hence

E [ST ] = S0 = 0.

Solving for P{ST = k} yields

P{ST = k} =
j

j + k
.

3.4.2. Asymmetric random walk. Suppose 1
2 < p < 1, and X1,

X2, . . . are independent random variables with P{Xj = 1} = 1 −
P{Xj = −1} = p. Let S0 = 0 and

Sn = X1 + · · · +Xn.

We will find a useful martingale by finding a harmonic function

for the random walk. The function f is harmonic if

E [f(Sn) | Sn−1] = f(Sn−1).

Writing this out, we get the relation

f(x) = p f(x+ 1) + (1 − p) f(x− 1).

A function that satisfies this equation is

f(x) =

(

1 − p

p

)x

,

and using this, we see that

Mn =

(

1 − p

p

)Sn

is a martingale. Let j, k, T be as in the previous section. Note that

M0 = 1, and since MT∧n is a bounded martingale

E [MT ] = M0 = 1.

If r = P{ST = k}, then

E [MT ] = (1 − r)

(

1 − p

p

)−j

+ r

(

1 − p

p

)k

.

Solving for r gives

P{ST = k} =
1 − θj

1 − θj+k
where θ =

1 − p

p
< 1.
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Note what happens as k → ∞. Then

P{ random walker ever reach − j} = lim
k→∞

P{ST = j} = θj .

3.4.3. Polya’s urn. We will use the optional sampling theorem to

deduce some facts about Polya’s urn as in Section 3.1.3. To be more

general, assume that we start with an urn with J red balls and K

green balls so that the fraction of red balls at the start is b = J/(J +

K). We let Mn denote the fraction of red balls at time n so that

M0 = b. Let a < b, and let T denote the smallest n such that Mn ≤ a.

Then T is a stopping time although it is possible that T = ∞. We will

give an upper bound on the probability that T < ∞. The optional

sampling theorem in the form of Proposition 3.3 implies

b = E[M0] = E[MT∧n] =

P{T ≤ n}E[MT | T ≤ n] + [1 − P{T ≤ n}] E [MT | T > n] .

Solving for P{T ≤ n} gives

(3.15) P{T ≤ n} =
E [MT | T > n] − b

E [MT | T > n] − E [MT | T ≤ n]
.

A little thought (verify this!) shows that

0 ≤ E [MT | T ≤ n] ≤ a, b ≤ E [MT | T > n] ≤ 1,

and (with the aid of some simple calculus) we can see that the right

hand side of (3.15) is at most equal to (1 − b)/(1 − a). Therefore,

P{T <∞} = lim
n→∞

P{T ≤ n} ≤ 1 − b

1 − a
.

By essentially the same argument (or by the same fact for the fraction

of green balls), we can see that if M0 ≤ a, then the probability that

the fraction of balls ever gets as large as b is at most a/b.

Let us continue this. Suppose M0 = b. Consider the event that

at some time the fraction of red ball becomes less than or equal to a

and then after that time it becomes greater than or equal to b again.

By our argument, we see that the probability of this event is at most
(

1 − b

1 − a

)

a

b
.

Let us call such an event an (a, b) fluctuation. (In the martingale

literature, the terms upcrossing and downcrossing are used. For us an
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(a, b) fluctuation is a downcrossing of a followed by an upcrossing of

b.) The probability of at least k (a, b) fluctuations (to be precise, an

(a, b) fluctuation, followed by another (a, b) fluctuation, followed by

another, for a total of k fluctuations) is no larger than

[(

1 − b

1 − a

)

a

b

]k

.

Note that this goes to zero as k → ∞. What we have shown is

P {there are infinitely many (a, b) fluctuations} = 0.

Up to now we have fixed a < b. But since there are only countably

many rationals, we can see that

P {∃ rational a < b with infinitely many (a, b) fluctuations} = 0.

This leads to an interesting conclusion. We leave this simple fact as

an exercise.

Lemma 3.5. Suppose x0, x1, x2, . . . is a sequence of numbers such

that for every rational a < b, the sequence does not have an infinite

number of (a, b) fluctuations. Then there exists C ∈ [−∞,∞] such

that

lim
n→∞

xn = C.

If the sequence is bounded, then C ∈ (−∞,∞).

Proof. Exercise 3.8. �

Given this, then we can see we have established the following:

with probability one, there is an M∞ ∈ [0, 1] such that

lim
n→∞

Mn = M∞.

We should point out that M∞ is a random variable , i.e., different re-

alizations of the experiment of drawing balls will give different values

for M∞ (see Exercises 3.9 and 3.10).
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3.5. Martingale convergence theorem

We will generalize the convergence fact that was just established for

the Polya urn model. The next theorem shows that under a relatively

weak condition, we can guarantee that a martingale converges.

Theorem 3.6 (Martingale Convergence Theorem). Suppose M0, M1,

. . . is a martingale with respect to X0, X1, . . .. Suppose that there

exists C <∞ such that for all n,

E [|Mn|] ≤ C.

Then there is a random variable M∞ such that with probability one

lim
n→∞

Mn = M∞.

Before proving the theorem let us consider some examples.

• If Sn = X1 + · · ·+Xn denotes simple random walk, then Sn

is a martingale. However,

lim
n→∞

E [|Sn|] = ∞,

so this does not satisfy the condition of the theorem. Also,

Sn does not converge as n→ ∞.

• Suppose M0,M1, . . . only take nonnegative values. Then

E[Mn] = E[M0] <∞,

and hence the conditions are satisfied.

• Let Wn be the winnings in the martingale betting strategy

as in (3.1). Then

E [|Wn|] = (1 − 2−n) 1 + 2−n [2n − 1] ≤ 2.

Therefore, this does satisfy the conditions of the theorem.

In fact, with probability one,

lim
n→∞

Wn = W∞,

where W∞ ≡ 1. Note that E[W∞] 6= E[W0]. In particular,

it is not a conclusion of the martingale convergence theorem

that E[M∞] = E[M0].
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Proof. For ease we will assume that M0 = 0; otherwise we can con-

sider M0 −M0,M1 −M0, . . .. As in the Polya urn case, we will show

that for every a < b, the probability that there are infinitely many

(a, b) fluctuations is zero. The basic idea of the proof can be consid-

ered a financial strategy: “buy low, sell high”. To make this precise,

let us write

Mn = ∆1 + · · · + ∆n

where ∆j = Mj −Mj−1. We will consider

Wn =

n
∑

j=1

Bj ∆j ,

where Bj are “bets” (or “investments”) which equal zero or one and,

as in Section 3.1.2, the bet Bj must be measurable with respect to

Fj−1. The total winnings Wn is a martingale which can be seen by

E[Wn | Fn−1] = E[Wn−1 +Bn(Mn −Mn−1) | Fn−1]

= E[Wn−1 | Fn−1] + E[Bn(Mn −Mn−1) | Fn−1]

= Wn−1 +BnE[Mn −Mn−1 | Fn−1] = Wn−1.

The third equality uses the fact that Wn−1 and Bn are measurable

with respect to Fn−1. In particular,

E[Wn] = E[W0] = 0.

This is true for every acceptable betting rule Bn. We now choose

a particular rule. For ease, we will assume a ≤ 0 (the a > 0 case is

done similarly). We let Bj = 0 for all j < T where T is the smallest

n such that Mn−1 ≤ a. We let BT = 1 and we keep Bn = 1 until the

first time m > n that Mm ≥ b. At this point, we change the bet to

zero and keep it at zero until the martingale M drops below a again.

Every time we have an (a, b) fluctuation, we gain at least b−a in this

strategy. Let Jn denote the number of (a, b) fluctuations by time n.

Then

Wn ≥ Jn (b − a) + (Mn − a) 1{Mn ≤ a} ≥ Jn (b − a) − |Mn|.
The term

(Mn − a) 1{Mn ≤ a},
which is nonpositive, comes from considering the amount we have

lost in the last part of the process where we started “buying” at
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the last drop below a before time n. Since E[Wn] = 0, we can take

expectations of both sides to conclude

E[Jn] ≤ E[|Mn|]
b− a

≤ C

b− a
.

The right hand side does not depend on n, so if J = J∞ denotes the

total number of (a, b) fluctuations,

E[J ] ≤ C

b− a
<∞.

If a nonnegative random variable has finite expectation, then with

probability one it is finite. Hence the number of (a, b) fluctuations

is finite with probability one. As in the Polya urn case, we can use

Lemma 3.5 to see that with probability one the limit

lim
n→∞

Mn = M∞

exists. We also claim that with probability oneM∞ ∈ (−∞,∞). This

can be seen from the estimate

P{|Mn| ≥ K} ≤ K−1
E[|Mn|] ≤

C

K
,

from which one can conclude

P{|M∞| ≥ K} ≤ C

K
.

�

3.5.1. Random Cantor set. Consider the random Cantor set from

Section 3.1.4. We use the notation from that section. Recall that Yn

denotes the number of individuals at the nth generation and Mn =

µ−n Yn is a martingale, where µ is the mean number of offspring

(or remaining subintervals) per individual (interval). In the example

Y0 = M0 = 1. Since this is a nonnegative martingale, the martingale

convergence theorem implies that there is an M∞ such that with

probability one,

lim
n→∞

Mn = M∞.

Proposition 3.7. If µ ≤ 1, then M∞ = 0. In fact, with probability

one, Yn = 0 for all large n.
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Proof. Note that E[Yn] = µn E[Mn] = µn. If µ < 1, then

P{Yn ≥ 1} =

∞
∑

k=1

P{Yn = k} ≤

∞
∑

k=1

k P{Yn = k} = E[Yn] = µn −→ 0.

If µ = 1, then Yn = Mn which implies

lim
n→∞

Yn = M∞.

Since Yn takes on only integer values, the only way that this limit

can exist is for Yn to take the same value for all sufficiently large n.

But the nature of the process shows immediately that if k > 0, then

P{Yn+1 = 0 | Yn = k} > 0 from which one case see that it cannot be

the case that Yn = k for all large n. �

For µ ≤ 1, we see that E[M∞] 6= E[M0]. In the next section,

we will show that if µ > 1, then E[M∞] = E[M0] = 1. In particular,

P{M∞ 6= 0} > 0 which implies that with positive probability Yn →
∞. (We cannot hope for this to be true with probability one, because

there is a positive probability that we will be unlucky early on and

die out.) For large n,

Yn ∼M∞ µn.

This means that there is geometric growth of the number of offspring

with rate µ. The constant factor M∞ is random and depends on the

randomness in the early generations. With the aid of Exercise 3.19,

we will see that there are only two possibilities: either Yn = 0 for

some n and hence the random Cantor set is empty, or M∞ > 0 so

that the number of intervals in the nth generation grows like M∞ µn.

Roughly speaking, once the population gets large, the growth rate is

almost deterministic with rate µ, Yn+1 ∼ µYn. The constant factor

M∞ is determined by the randomness in the first few generations.

3.6. Uniform integrability

Suppose M0,M1, . . . is a martingale for which there exists M∞ with

M∞ = lim
n→∞

Mn.
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We know that for each n,

E[Mn] = M0.

If we could interchange the limit and expectation, we would have

E [M∞] = E

[

lim
n→∞

Mn

]

= lim
n→∞

E [Mn] = M0.

We have already seen examples for which the conclusion is false, so

we can see that the interchange is not always valid.

This leads to asking: suppose Y1, Y2, . . . is a sequence of random

variables such that there is a random variable Y such that with prob-

ability one,

lim
n→∞

Yn = Y.

Under what conditions can we conclude that

(3.16) lim
n→∞

E [Yn] = Y ?

There are two main theorems that are learned in a first course in

measure theory.

• Monotone Convergence Theorem. If 0 ≤ Y1 ≤ Y2 ≤
· · · , then (3.16) is valid.

• Dominated Convergence Theorem. If there exists a

random variable Z ≥ 0 with E(Z) < ∞ such that |Yn| ≤ Z

for every n, then (3.16) is valid.

In this section, we will derive a generalization of the dominated con-

vergence theorem that is very useful in studying martingales.

To motivate our main definition, let us first consider a random

variable Z such that E[|Z|] < ∞. Such a random variable is called

integrable. Note that

E [|Z|] =

∞
∑

n=0

E [|Z| 1{n ≤ |Z| < n+ 1}] .

Since the sum on the right is finite, we can see that for every ǫ > 0,

there is a K <∞ such that

E [|Z| 1{|Z| ≥ K}] =

∞
∑

n=K

E [|Z| 1{n ≤ |Z| < n+ 1}] < ǫ.

Our definition builds on this observation.
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Definition 3.8. A collection of random variables {Y1, Y2, . . .} is uni-

formly integrable if for every ǫ > 0, there is a K < ∞ such that for

each j,

E [|Yj | 1{|Yj| ≥ K}] < ǫ.

It follows from our discussion about that any collection {Y1} con-

sisting of only one integrable random variable is uniformly integrable.

It is not difficult (Exercise 3.15) to show that a finite collection of

integrable random variables is uniformly integrable. However, it is

possible for an infinite collection of integrable random variables to be

not uniformly integrable.

♦ The use of the word uniformly is similar to that in the terms uniform

continuity and uniform convergence. For example, a collection of continuous

random variables f1, f2, . . . on [0, 1] is uniformly continuous if for every ǫ > 0,

there is a δ > 0 such that |x−y| < δ implies |fj(x)−fj(y)| < ǫ. In particular,

for a given ǫ, there must be a single δ that works for every function fj . In the

definition of uniform integrability, for each ǫ, there is a K that works for each

Yj .

An example of a collection of integrable random variables that is

not uniformly integrable is given by the winnings using the martingale

betting strategy as in (3.1). In this case, if n ≥ 2,

E [|Wn| 1{|Wn| ≥ 2n − 1}] = 2−n [2n − 1] = 1 − 2−n.

Hence if we choose ǫ = 1/2, there is no choice of K such that for each

n.

E [|Wn| 1{|Wn| ≥ K}] ≤ 1

2
.

Theorem 3.9. Suppose Y1, Y2, . . . is a uniformly integrable sequence

of random variables such that with probability one

Y = lim
n→∞

Yn,

then

E[Y ] = lim
n→∞

E [Yn] .
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Proof. Without loss of generality, we may assume Y ≡ 0; otherwise,

we can consider Y1 − Y, Y2 − Y, . . .. Note that

|E[Yn]| ≤ E [|Yn|] .

Hence it suffices to show that

lim
n→∞

E [|Yn|] = 0,

and to show this we need to show that for every ǫ > 0, there is an N

such that if n ≥ N ,

E [|Yn|] < ǫ.

Let ǫ > 0. Since the collection {Yn} is uniformly integrable, there

is a K such that for each n,

(3.17) E [|Yn| 1{|Yn| ≥ K}] < ǫ

3
.

With probability one, we know that

lim
n→∞

Yn = 0.

This implies that for each ǫ > 0, there is a (random!) J such that if

n ≥ J ,

|Yn| <
ǫ

3
.

Since J is a random variable, we can find an N such that

P{J ≥ N} < ǫ

3K
.

We now choose n ≥ N and write

E [|Yn|] = E

[

|Yn| 1{|Yn| ≤
ǫ

3
}
]

+

E

[

|Yn| 1{
ǫ

3
< |Yn| < K}

]

+ E [|Yn| 1{|Yn| ≥ K}] .

We estimate the three terms on the right hand side. The third is

already done in (3.17) and obviously

E

[

|Yn| 1{|Yn| ≤
ǫ

3
}
]

≤ ǫ

3
.



130 3. Martingales

Also,

E

[

|Yn| 1{
ǫ

3
< |Yn| < K}

]

≤ K P{|Yn| ≥
ǫ

3
}

≤ K P{J ≥ n}
≤ K

ǫ

3K
=
ǫ

3
.

By summing we see that if n ≥ N , then E [|Yn|] < ǫ. �

The condition of uniform integrability can be hard to verify. It

is useful to have some simpler conditions that imply this. Although

the next proposition is stated for all α > 0, it is most often applied

with α = 1.

Proposition 3.10. Suppose Y1, Y2, . . . is a sequence of integrable ran-

dom variables such at least one of these conditions holds:

• There is an integrable Z, such that |Yj | ≤ |Z| for each j.

• There exist α > 0 and C <∞, such that for each j,

E[|Yj |1+α] ≤ C.

Then the sequence is uniformly integrable.

Proof. The argument to show that the first condition implies uniform

integrability is very similar to the argument to show that a single

random variable is uniformly integrable; we leave this to the reader.

Assume E[|Yj |1+α] ≤ C for each j. Then,

E [|Yj | 1{|Yj| ≥ K}] ≤ K−α
E
[

|Yj |1+α 1{|Yj| ≥ K}
]

≤ K−α C.

In particular, if ǫ > 0 is given and K > (C/ǫ)1/α, then for all j,

E [|Yj | 1{|Yj| ≥ K}] < ǫ.

�

3.6.1. Random Cantor set. Let us return to the random Cantor

set with µ > 1. We use the notation of Section 3.1.4.

Proposition 3.11. Suppose µ > 1. Then there exists C < ∞ such

that for all n,

E
[

M2
n

]

≤ C.
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In particular, M0,M1,M2, . . . is a uniformly integrable collection of

random variables.

Proof. We start with (3.6) that tell us that

E[Y 2
n+1 | Yn = k] = Var[Yn+1 | Yn = k] + E[Y 2

n+1 | Yn = k]

= kσ2 + k2 µ2.

Therefore,

E[Y 2
n+1] =

∞
∑

k=0

P{Yn = k}E[Y 2
n+1 | Yn = k]

= σ2

[ ∞
∑

k=0

P{Yn = k} k
]

+ µ2

[ ∞
∑

k=0

P{Yn = k} k2

]

= σ2
E[Yn] + µ2

E[Y 2
n ] = σ2 µn + µ2

E[Y 2
n ].

Therefore,

E
[

M2
n+1

]

= µ−2(n+1)
E
[

Y 2
n+1

]

= σ2 µ−n−2 + E
[

M2
n

]

.

By induction, we see that

E
[

M2
n+1

]

= σ2
n
∑

j=0

µ−j−2 < σ2
∞
∑

j=0

µ−j−2 <∞.

Note that the last inequality uses µ > 1. Uniform integrability follows

from Proposition 3.10. �

Exercises

Exercise 3.1. Give an example of random variables Y,X1, X2 such

that Y is independent of X1, Y is independent of X2, but Y is not

independent of X1, X2.

Exercise 3.2. Prove (3.9).

Exercise 3.3. Suppose Y is a random variable with E[Y ] = 0 and

E[Y 2] <∞. Let F = Fn be the information contained in X1, . . . , Xn

and let Z = E(Y | F). Show that

E
[

Y 2
]

= E
[

Z2
]

+ E
[

(Y − Z)2
]

.
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Exercise 3.4. Suppose that Mn is a martingale with respect to {Fn}
with M0 = 0 and E[M2

n] <∞. Show that

E
[

M2
n

]

=

n
∑

j=1

E[(Mj −Mj−1)
2].

Exercise 3.5. Let M0,M1, . . . be a martingale with respect to Fn

such that for each n, E[M2
n] <∞.

(1) Show that if Y is a random variable with E[Y 2] < ∞, then

E[Y 2 | F ] ≥ (E[Y | F ])2. Hint: consider [Y − E(Y | Fn)]2.

(2) Show that if Yn = M2
n, then Y0, Y1, . . . is a submartingale

with respect to Fn.

Exercise 3.6. Suppose Y0, Y1, . . . is a submartingale with Yj ≥ 0 for

each j. Let

Y n = max{Y0, Y1, . . . , Yn}.
Show that for every a > 0,

P
{

Y n ≥ a
}

≤ a−1
E[Yn].

Hint: Let T = min{j : Yj ≥ a} and let Ej be the event {T = j}.
Show that for j ≤ n,

aP{T = j} ≤ E [Yj 1{T = j}] ≤ E [Yn 1{T = j}] .

Exercise 3.7. Use the previous two exercises to conclude the follow-

ing generalization of Chebyshev’s inequality. Suppose M0,M1, . . . is

a martingale with respect to X0, X1, X2, . . .. Then for every positive

integer n and every a > 0,

P {max{|M0|, . . . , |Mn|} ≥ a} ≤ a−2
E
[

M2
n

]

.

Exercise 3.8. Prove Lemma 3.5.

Exercise 3.9. Suppose Mn is the fraction of red balls in the Polya

urn where at time 0 there exist one red and one green ball.

(1) Show that for every n, the distribution of Mn is uniform on

the set
{

1

n+ 2
,

2

n+ 2
, . . . ,

n+ 1

n+ 2

}

.

Hint: use induction.



Exercises 133

(2) Let M∞ = limn→∞Mn. What is the distribution of M∞?

Exercise 3.10. Do a computer simulation of Polya’s urn. Start with

one red ball and one green ball and do the ball selection until there

are 502 balls and then continue until there are 1002 balls.

(1) Use the simulations to try to guess (without the benefit of

the previous exercise) the distribution of M500 and M1000.

(2) For each run of the simulation, compare M500 and M1000

and see how much they vary.

Exercise 3.11. Suppose in Polya’s urn there are k different colors

and we initially start with one ball of each color. At each integer

time, a ball is chosen from the urn and it and another ball of the

same color are returned to the urn.

(1) Let Mn,j denote the fraction of balls of color j after n steps.

Show that with probability one the limits

M∞,j = lim
n→∞

Mn,j

exist.

(2) In the case k = 3 find the distribution of the random vector

(M∞,1,M∞,2,M∞,3).

Exercise 3.12. Consider random walk on the set {0, 1, . . . , N} where

one stops when one reaches 0 or N and otherwise at each step move to

the right one unit with probability p and left one unit with probability

1 − p. Suppose that the initial position is S0 = j ∈ {1, . . . , N}. Let

T = min{n : Sn = 0 or N}.

Show that there exists a ρ > 0 and C <∞ such

P{T > n} ≤ C e−ρn.

Conclude that E[T ] <∞. Hint: Show that there is a u > 0 such that

for all n,

P{T > N + n | T > n} ≤ 1 − u.

Exercise 3.13. Let Sn and T be as in Section 3.4.1.
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(1) Let

Mn = S2
n − n.

Show that Mn is a martingale with respect to S0, S1, . . . .

(2) Show that

lim
n→∞

E [|Mn| 1{T > n}] = 0.

Hint: Exercise 3.12 may be helpful.

(3) Use the optional sampling theorem to show that

E [T ] = jk.

Exercise 3.14. Let Sn, T be as in Section 3.4.2.

(1) Show that

Mn = Sn + n(1 − 2p)

is a martingale with respect to S0, S1, S2, . . . .

(2) Use this martingale and the optional sampling theorem to

compute E[T ].

Exercise 3.15. Show that any finite collection Y1, . . . , Ym of in-

tegrable random variables is uniformly integrable. More generally,

show that if Z1, Z2, . . . is a uniformly integrable collection, then so is

Y1, . . . , Ym, Z1, Z2, . . . .

Exercise 3.16. Let X1, X2, . . . , be independent random variables

each with

P{X1 = 2} =
1

3
, P

{

Xj =
1

2

}

=
2

3
.

Let M0 = 1 and for j ≥ 1,

Mn = X1X2 · · · Xn.

(1) Show that Mn is a martingale with respect to M0, X1, X2,

. . . .

(2) Use the martingale convergence theorem to show that there

is an M∞ such that with probability one

lim
n→∞

Mn = M∞.

(3) Show that M∞ ≡ 0. (Hint: consider logMn and use the law

of large numbers.)
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(4) Show that the sequence M0,M1,M2, . . . is not uniformly

integrable.

(5) Show that for every α > 0,

sup
n

E
[

M1+α
n

]

= ∞.

Exercise 3.17. Suppose X1, X2, . . . are independent random vari-

ables with

P{Xj = 1} = P{Xj = −1} =
1

2
.

Let M0 = 0 and for n ≥ 1,

Mn =

n
∑

j=1

Xj

j
.

Mn can be considered as a random harmonic series.

(1) Show that Mn is a martingale.

(2) Show that for each n,

E
[

M2
n

]

≤ π2

6
.

(3) Use the martingale convergence theorem to show that there

exists M∞ such that with probability one

lim
n→∞

Mn = M∞.

In other words, the random harmonic series converges.

Exercise 3.18. Suppose Y1, Y2, . . . is a uniformly integrable collec-

tion of random variables. Show that the following holds. If ǫ > 0,

there exists δ > 0 such that if V is an event with P(V ) < δ, then for

every j,

E [|Yj | 1V ] < ǫ.

Exercise 3.19. Consider the random Cantor set with µ > 1 and

Y0 = 1. We have shown that E[M∞] = E[M0] = 1 which implies that

q := P{M∞ > 0} > 0. Let p be the probability that the random

Cantor set is empty. We have seen that

p = P{there exists n with Yn = 0}.
If Yn = 0 for some n, then Ym = 0 for m ≥ n and M∞ = 0. The goal

of this exercise is to prove the converse, that is, q = 1 − p.
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(1) Let Tk = min{n : Yn ≥ k}. Explain why

P{M∞ > 0 | Tk <∞} ≥ 1 − (1 − q)k.

(2) Show that for each k with probability one one of two things

happens: either Tk <∞ or Yn = 0 for some n.

Exercise 3.20. This is a continuation of Exercise 3.19. We will find

the extinction probability p. Let rj denote the probability that in the

first iteration of the random Cantor set there are exactly j intervals.

Let φ be the function

φ(s) =

∞
∑

j=0

rj s
j .

(This is really a finite sum and hence φ is a polynomial.)

(1) Explain why p = φ(p).

(2) Show that φ(s) < ∞ for 0 ≤ s ≤ 1 and φ is an increasing

function on this range.

(3) Let rj,n denote the probability that there are exactly j in-

tervals at the nth generation (in particular, rj,1 = rj . Let

φ(n)(s) =

∞
∑

j=0

rj,n s
j .

Show that for all n, φn+1(s) = φ(φn(s)).

(4) Explain why

p = lim
n→∞

φ(n)(0).

(5) Show that p is the smallest positive solution to the equation

p = φ(p).

(6) Suppose the random Cantor set is constructed by dividing

intervals into three pieces and choosing each piece with prob-

ability 2/3. Find the extinction probability p.



Chapter 4

Fractal Dimension

The idea of dimension arises in a number of areas of mathematics.

All reasonable definitions consider the real line as a one-dimensional

set, the plane as a two-dimensional set, and in general Rd to be a d-

dimensional set. In linear algebra, one characterizes the dimension as

the minimal number of vectors in a spanning set or as the maximum

number of vectors in a linearly independent collection. This algebraic

definition is not very useful for describing subsets of R
d that are not

vector subspaces. Fractal dimensions are a way to assign dimensions

to irregular subsets of Rd. We use the plural dimensions to indicate

that there are a number of nonequivalent ways of defining this. One

particular aspect is that the fractal dimension does not have to be an

integer. We will discuss two definitions, box dimension and Hausdorff

dimension.

4.1. Box dimension

Suppose A is a bounded subset of Rd. For every ǫ > 0, let Nǫ = Nǫ(A)

denote the minimal number of closed balls of diameter ǫ needed to

cover the set A. The box dimension of A, D = D(A), is defined

roughly by the relation

Nǫ(A) ≈ ǫ−D, ǫ→ 0 + .

137
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For nonmathematicians, this might suffice as a definition. However,

we will want to be more precise. We start by defining the notation

≈.

Definition 4.1. If f, g are positive functions on (0,∞) such that

f(0+) = 0, g(0+) = 0 or f(0+) = ∞, g(0+) = ∞, we write

f(x) ≈ g(x), x→ 0+,

if

lim
x→0+

log f(x)

log g(x)
= 1.

Definition 4.2. A function φ : (0,∞) → (0,∞) is called a subpower

function (as x→ 0) if for every a > 0, there is an ǫ > 0 such that

xa ≤ φ(x) ≤ x−a, 0 < x ≤ ǫ.

The following properties are straightforward to show and are left

as an exercise (Exercise 4.1).

Lemma 4.3.

• Constants are subpower functions.

• If β ∈ R, [log(1/x)]β is a subpower function.

• If φ1, φ2 are subpower functions, so are φ1 + φ2 and φ1 φ2.

• If φ1, φ2 are subpower functions and a 6= 0, then

xa φ1(x) ≈ xa φ2(x), x→ 0 + .

Definition 4.4. A bounded subset A ⊂ Rd has box dimension D =

D(A) if there exist subpower functions φ1, φ2 such that for all ǫ

φ1(ǫ) ǫ
−D ≤ Nǫ(A) ≤ φ2(ǫ) ǫ

−D.

If D > 0, this is equivalent to the relation

Nǫ(A) ≈ ǫ−D, ǫ→ 0 + .

♦ The box dimension is not defined for all sets A. One can define the
upper box dimension by

D(A) = lim sup
ǫ→0+

log Nǫ(A)

log(1/ǫ)
.
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The lower box dimension is defined similarly using lim inf . The upper and

lower box dimensions are defined for every set, and the box dimension exists if

the upper and lower box dimensions are equal.

It can be challenging to determine box dimensions because the

quantity Nǫ(A) can be hard to compute exactly. However, as long

as we can estimate it well enough on both sides, we can find the box

dimension. The following simple lemma helps.

Lemma 4.5. Suppose A ⊂ Rd is a bounded set and S = {x1, . . . , xk}
⊂ A.

• If for every y ∈ A, there exists xj ∈ S with |y − xj | ≤ ǫ/2,

then Nǫ(A) ≤ k.

• If |xj − xi| > 2ǫ for all j 6= i, then Nǫ(A) ≥ k.

Proof. The first assertion follows by considering the covering of A

by the balls of diameter ǫ centered at xj ∈ S. If |xj − xi| > 2ǫ, then

no ball of diameter ǫ can include both xi and xj . Hence any cover

must include at least k balls. �

We consider some examples.

• If A = [0, 1], then it takes about ǫ−1 balls (intervals) of

diameter ǫ to cover [0, 1]. Therefore, D(A) = 1.

• If A = [0, 1] × [0, 1], we can see that it takes c ǫ−2 balls of

diameter ǫ to cover A. Therefore, D(A) = 2.

• Let A be the Cantor set as defined in Section 3.1.4. Then An

is the disjoint union of 2n intervals each of length (diameter)

3−n. Since A ⊂ An, we have N3−n(A) ≤ 2n. Since the left

endpoints of these intervals are all retained in A, we can use

Lemma 4.5 to see that N3n+1(A) ≥ 2n. Hence

Nǫ(A) ≈ ǫ−D where D =
log 2

log 3
.

• Let A be the random Cantor set as in Section 3.1.4. Then

An is the union of Yn intervals each of length k−n. If µ ≤ 1,

then with probability one A = ∅. Let us consider the case
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µ > 1. With probability p < 1, A = ∅ and with probability

q = 1 − p, as n→ ∞,

Yn ∼M∞ µn,

with M∞ > 0. Since An ⊃ A, we see that Nk−n(A) ≤ Yn.

It requires a little more argument, but one can show that

on the event A 6= ∅

D(A) =
logµ

log k
.

We list some properties of box dimension.

• If A1, . . . , Ar have box dimensions D(A1), . . . , D(Ar), re-

spectively, then the box dimension of A1 ∪ · · · ∪Ar is

max{D(A1), . . . , D(Ar)}.
Indeed, this follows immediately from

max
j
Nǫ(Aj) ≤ Nǫ(A1 ∪ · · · ∪Ar) ≤ Nǫ(A1) + · · · +Nǫ(Ar).

• If A ⊂ R
d with box dimensionD(A), then the box dimension

of the closure of A is also D(A). Indeed, any cover of A with

a finite number of closed sets is also a cover of the closure

of A (why?). For example, the box dimension of the set

of rational numbers between 0 and 1 is the same as the

dimension of [0, 1] which is 1. Note that this shows that

the countable union of sets of box dimension zero can have

nonzero box dimension.

4.2. Cantor measure

In this section we compare two measures on [0, 1]: length (or more

fancily called Lebesgue measure) which is a one-dimensional measure

and Cantor measure which is related to the Cantor set and is an α-

dimensional measure where α = log 2/ log 3. In both cases, we can

think of the measures probabilistically in terms of an infinite number

of independent trials.

Suppose we pick a number from [0, 1] at random from the uniform

distribution. Then for any set A ⊂ [0, 1], we would like to say that

the probability that our number is in A is given by the length of
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A, l(A). This gets a little tricky when A is a very unusual subset,

but certainly if A is an interval or a finite union of intervals, this

interpretation seems reasonable.

Any x ∈ [0, 1] can be written in its dyadic expansion

x = .a1a2a3 · · · =

∞
∑

j=1

aj

2j
, aj ∈ {0, 1}.

This expansion is unique unless x is a dyadic rational (e.g., .0111 · · · =
.1000 · · · = 1/2), but the chance that we choose such a dyadic rational

is zero so we will just assume that the expansion is unique. We

can think of a1, a2, . . . as independent random variables taking values

0 and 1 each with probability 1/2. Another way to think of the

measure is in terms of mass distribution. We have a total mass of 1

to distribute. We start by splitting [0, 1] into two intervals [0, 1
2 ] and

[ 12 , 1] and we divide the mass equally between these two sets, giving

each mass 1/2. Then each of these two intervals is divided in half

and the mass is split evenly between the intervals. This gives us four

intervals, each with mass 1/4. The total mass for the interval [0, x]

becomes x.

The Cantor measure is defined similarly except that we write

real numbers in their ternary expansion and consider only those real

numbers for which 1 does not appear:

x = .b1b2 · · · =
∞
∑

j=1

bj
3j
, bj ∈ {0, 2}.

The random variables b1, b2, . . . are independent taking the values

0 and 2 each with probability 1/2. In terms of mass distribution,

we have a total mass of 1 for the interval [0, 1]. When the interval is

divided into three pieces [0, 1
3 ], [ 13 ,

2
3 ], [ 23 , 1], the first and third intervals

each get mass 1/2 and the middle interval gets mass 0. Each of these

intervals is in turn split into three equal intervals with the first and

third intervals receiving half of the mass each and the middle interval

receiving none. At the nth stage there are 3n intervals of length 3−n.

The mass is distributed equally among 2n of the intervals (each having

mass 2−n) and the other intervals have zero mass. As can be seen,

the 2n intervals with positive mass are the intervals appearing in the
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nth approximation of the Cantor set. In the limit, we get a measure

µ on [0, 1] called the Cantor measure.

The Cantor measure is closely related to the Cantor function

(4.1) F (x) = µ[0, x].

The function F is a continuous, nondecreasing function which equals

1/2 for 1/3 ≤ x ≤ 2/3; 1/4 for 1/9 ≤ x ≤ 2/9; 3/4 for 7/9 ≤ x ≤ 8/9,

etc.

The Cantor measure gives zero measure to every point. However,

it gives measure one to the Cantor set; this can be seen by noting

the the measure of An is one for each n. Note that the length of the

Cantor set is 0 since the length of An is 2n 3−n → 0. This measure

is in some sense an α-dimensional measure where α = log 2/ log 3.

There are several ways to measure the “dimension” of a measure.

One way is to say that a measure is D-dimensional if for small ǫ,

balls of diameter ǫ tend to have measure ǫD (we are being somewhat

vague here). This characterization is consistent with length being a

one-dimensional measure, area a two-dimensional measure, volume a

three-dimensional measure, etc. In the Cantor measure, if I is one

of the intervals of length 3−n in An, then the measure of A ∩ I is

2−n = diam(I)α.

Proposition 4.6. Suppose I is a closed subinterval of [0, 1]. Then

(4.2) m(I) ≤ 3α l(I)α, α =
log 2

log 3
.

Proof. Suppose l(I) = 3−k for some positive integer k. Since the kth

approximation of the Cantor set consists of 2k intervals of length 3−k

and none of the intervals are adjacent, we can see that the interior

of I can intersect at most one of these intervals. Therefore m(I) ≤
2−k = l(I)α. Similarly, if 3−k−1 < l(I) ≤ 3−k, we can conclude

m(I) ≤ 2−k = (3−k)−α ≤ 3α l(I)α.

�

In Exercise 4.4 you are asked to improve this to show that for all

intervals

m(I) ≤ l(I)α.
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4.2.1. Some notes on measures and integrals. We used the

term measure somewhat loosely in this section. Here we introduce

some precise definitions. A measure is a function m from a collec-

tion of subsets of Rd into [0,∞). For technical reasons, it is often

impossible to define a measure on all subsets, but one can define it

on all reasonable sets. The next definition describes the sets we will

consider.

Definition 4.7. The Borel subsets of Rd, denoted by B, is the small-

est collection of subsets of Rd with the following properties:

• All open sets are in B;

• If V ∈ B, then Rd \ V ∈ B;

• If V1, V2, . . . is a finite or countable collection of sets in B,

then ∞
⋃

j=1

Vj ∈ B.

It may not be obvious to the reader that this definition makes

sense; see Exercise 4.5 for more details. All closed sets are Borel sets

since closed sets are of the form Rd \ V for an open set V .

Definition 4.8. A (Borel) measure is a function m : B → [0,∞] such

that m(∅) = 0 and if V1, V2, . . . ∈ B are disjoint,

m





∞
⋃

j=1

Vj



 =
∞
∑

j=1

m(Vj).

We will also need the Lebesgue integral with respect to a measure.

We will only need it for positive functions.

Definition 4.9. If m is a Borel measure and f is a positive function

on R, then
∫

f(x)m(dx)

is defined as follows.

• If f is a simple function, that is, a function of the form

(4.3) f(x) =

n
∑

j=1

aj 1{x ∈ Vj},
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for Borel sets Vj , then

∫

f(x)m(dx) =

∞
∑

j=1

aj m(Vj).

• If f1 ≤ f2 ≤ . . . are simple functions and

f = lim
n→∞

fn,

then

(4.4)

∫

f(x)m(dx) = lim
n→∞

∫

fn(x)m(x).

The careful reader will note that we have only defined the inte-

gral for functions that can be written in the form (4.3). This does

not include all positive functions, and, in fact, we cannot define the

integral for all functions. This will suffice for our purposes. Also, we

should define the integral to be the supremum of the right hand side

of (4.4) where the supremum is over all such sequence {fn}. In fact,

one can show the value is the same for all such sequences (this is the

monotone convergence theorem).

4.3. Hausdorff measure and dimension

Hausdorff dimension is another definition of fractal dimension that

agrees with the box dimensions on many sets such as the Cantor set

but is not mathematically equivalent. It has some nice mathematical

properties, e.g., it is well defined for every set, that makes it a more

useful tool for many applications. However, the definition is more

complicated which makes it more difficult to compute the dimension

of sets.

4.3.1. Hausdorff measure. Suppose A ⊂ Rd is a bounded set. For

each ǫ > 0, we define

Hα
ǫ (A) = inf

∞
∑

j=1

diam(Aj)
α,
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where the infimum is over all finite or countable collections of sets

A1, A2, . . . with

A ⊂
∞
⋃

j=1

Aj

and diam(Aj) ≤ ǫ. Here diam denotes the diameter of a set,

diam(V ) = sup{|x− y| : x, y ∈ V }.
If δ < ǫ, then

Hα
δ (A) ≥ Hα

ǫ (A)

since any covering of A by sets of diameter at most δ is also a covering

of A by sets of diameter at most ǫ. The Hausdorff α-measure of A is

defined by

Hα(A) = lim
ǫ→0+

Hα
ǫ (A).

The existence of the limit follows from the fact that increasing limits

exist. However, it is not clear that this definition is interesting; for

example, it could give the value 0 or ∞. In fact, our next proposition

will show that for any set A, there is at most one value of α such that

Hα(A) 6∈ {0,∞}.

Proposition 4.10. Suppose A ⊂ Rd is bounded and 0 ≤ α < β <∞.

• If Hα(A) <∞, then Hβ(A) = 0.

• If Hβ(A) > 0, then Hα(A) = ∞.

Proof. For any ǫ > 0 and any cover A1, A2, . . . of A of sets with

diam(Aj) ≤ ǫ,
∑

diam(Aj)
β ≤ ǫβ−α

∑

diam(Aj)
α.

Therefore, by taking infimums, we get

Hβ
ǫ (A) ≤ ǫβ−α Hα

ǫ (A).

Since ǫβ−α → 0 as ǫ→ 0+, we get the result. �

We will not prove the next proposition which justifies the term

Hausdorff measure. We define Hα(A) for unbounded A by

Hα(A) = lim
R→∞

Hα(A ∩ {x ∈ R
d; |x| ≤ R}).
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Proposition 4.11. For each α > 0, Hα is a measure on the Borel

sets. In other words, Hα : B → [0,∞] with Hα(∅) = 0 and if

V1, V2, . . . are disjoint

Hα





∞
⋃

j=1

Vj



 =
∞
∑

j=1

Hα(Vj).

Proposition 4.12. Suppose A is a bounded subset of Rd and α ≥ 0.

• If x ∈ Rd, and A+ x = {y + x : y ∈ A}, then Hα(A+ x) =

Hα(A).

• If r > 0, and rA = {ry : y ∈ A}, then Hα(rA) = rα Hα(A).

Proof. If A1, A2, . . . is a cover of A, then A1 +x,A2 +x, . . . is a cover

of A + x and rA1, rA2, . . . is a cover of rA. Using this one can see

that

Hα
ǫ (A+ x) = Hα

ǫ (A), Hα
rǫ(rA) = rα Hα

ǫ (A).

�

Example 4.13. Let A be the Cantor set. We will show that 3−α ≤
Hα(A) ≤ 1 where α = log 2/ log 3. (In Exercise 4.4, it is shown that

Hα(A) = 1.) Let ǫ > 0 and choose n sufficiently large so that 3−n < ǫ.

We can cover A with 2n intervals of length (diameter) 3−n. Therefore

Hα
ǫ (A) ≤ 2n (3−n)α = 1.

Letting ǫ → 0+, we get Hα(A) ≤ 1. To prove the lower bound we

use the Cantor measure m and the estimate (4.2). If A1, A2, . . . is a

cover of A, then

1 = m(A) ≤
∞
∑

j=1

m(Aj) ≤
∞
∑

j=1

3α diam(Aj)
α.

By taking the infimum, we see that Hα(A) ≥ 3−α.

4.3.2. Hausdorff dimension. If A ⊂ Rd, then the Hausdorff di-

mension of A which we denote by dimh(A) is defined by

dimh(A) = inf{α : Hα(A) = 0}.
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Using Proposition 4.10, we can also describe dimh(A) by the relation

Hα(A) =

{ ∞, α < dimh(A)

0, α > dimh(A)
.

If α = dimh(A), then Hα(A) can be 0,∞, or a finite positive number.

If 0 < Hβ(A) <∞ for some β then β = dimh(A).

Proposition 4.14. If A is a bounded set with box dimension D, then

dimh(A) ≤ D.

Proof. To show that dimh(A) ≤ D it suffices to show for every α >

D, Hα(D) = 0. Let D < β < α. Since the box dimension of A is D,

for all ǫ sufficiently small, we can cover D by ǫ−β sets of diameter ǫ.

Using this cover, we see that

Hα
ǫ (D) ≤ ǫ−β ǫα = ǫα−β.

Therefore,

Hα(D) = lim
ǫ→0+

Hα
ǫ (D) ≤ lim

ǫ→0+
ǫα−β = 0.

�

The next proposition gives a property of Hausdorff dimension

that is not satisfied by box dimension.

Proposition 4.15. Suppose A1, A2, . . . are subsets of R
d. Then

dimh





∞
⋃

j=1

Aj



 = sup {dimh(Aj) : j = 1, 2, . . .} .

Proof. By monotonicity, for each j,

dimh





∞
⋃

j=1

Aj



 ≥ dimh(Aj),

and hence

dimh





∞
⋃

j=1

Aj



 ≥ sup {dimh(Aj) : j = 1, 2, . . .} .
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Conversely, suppose α > dimh(Aj) for every j. Then Hα(Aj) = 0

and by properties of measures

Hα





∞
⋃

j=1

Aj



 = 0.

This implies that α ≥ dimh[∪Aj ].

�

It follows from the proposition that every countable set has Haus-

dorff dimension zero. In particular, the set of rationals between 0 and

1 has dimension zero. Recall that the box dimension of a set is the

same as its closure so this set has box dimension one. This example

shows that the Hausdorff dimension of a set is not necessarily the

same as its closure.

4.3.3. Computing Hausdorff dimensions. Computing Hausdorff

measure and Hausdorff dimension can be difficult. Let us start with

an example.

Proposition 4.16. If A = [0, 1], then H1(A) = 1. In particular,

dimh([0, 1]) = 1.

Proof. We will prove the stronger fact that H1
ǫ (A) = 1 for each ǫ > 0.

Fix ǫ > 0. To give an upper bound, choose n > 1/ǫ and consider the

cover of A by the n intervals Aj,n = [ j−1
n , j

n ] for j = 1, . . . , n. Then

H1
ǫ (A) ≤

n
∑

j=1

diam(Aj,n) = 1.

To prove the lower bound, suppose A1, A2, . . . is a collection of sets

such that A ⊂ ⋃∞
j=1 Aj . Without loss of generality assume that Aj

are actually intervals. Then diamAj = l(Aj) where l denotes length.
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Then

1 = l(A) ≤ l





∞
⋃

j=1

Aj





≤
∞
∑

j=1

l(Aj)

=
∞
∑

j=1

diam(Aj).(4.5)

�

This proof is typical of calculations of Hausdorff measure and

Hausdorff dimension. In order to get an upper bound, one needs only

find a good cover. However, to get lower bounds one needs bounds

that hold for all covers. In the case A = [0, 1], we used a measure on

[0, 1] (length) to estimate the sum in (4.5) for any cover. This is the

most common way to give lower bounds. The idea is to show a set is

big by showing there is a way to distribute mass on the set so that it

is sufficiently spread out. Somewhat more precisely, the idea is that if

one can put an “α-dimensional” measure on a set, then the set must

be at least α-dimensional.

We say that a measure m is carried on A if m(Rd \ A) = 0. For

example, the Cantor measure is carried on the Cantor set A. We will

call a measure m that is carried on A and satisfies 0 < m(A) < ∞ a

mass distribution on A.

Proposition 4.17. Suppose A is a bounded subset of R
d. Suppose m

is a mass distribution on A and that there exist ǫ0 > 0, c < ∞ such

that for all B with diam(B) < ǫ0,

m [B] ≤ c diam(B)α.

Then Hα(A) ≥ c−1m(A) > 0. In particular,

dimh(A) ≥ α.
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Proof. Let A1, A2, . . . be a collection of sets with A ⊂ ⋃

Aj and

diam(Aj) < ǫ0. Then

m(A) ≤
∞
∑

j=1

m(Aj) ≤ c

∞
∑

j=1

diam(Aj)
α.

By taking the infimum, we can see that for each ǫ < ǫ0,

Hα
ǫ (A) ≥ c−1m(A).

�

The last proposition is not difficult to prove, but unfortunately

the conditions are too strong when dealing with random fractals such

as the random Cantor set. We will give a different way of saying that

a measure is spread out. To motivate, let us consider an integral in

Rd,
∫

|x|≤1

ddx

|x|α .

Using spherical coordinates, we can see that the integral is finite if

α < d and is infinite if α ≥ d (check this!). Using this as motivation,

we can see that if m is a mass distribution with
∫

|x|≤1

m(dx)

|x|α <∞,

then m looks “at least α-dimensional” near zero. We need to focus

locally at all points, so we will consider instead a somewhat more

complicated integral:

Eα(m) =

∫ ∫

m(dx)m(dy)

|x− y|α .

We will not prove the following generalization of Proposition (4.17).

Theorem 4.18. Suppose A is a compact subset of Rd and m is a

mass distribution on A with Eα(m) <∞. Then dimh(A) ≥ α.

4.3.4. Random Cantor set. We will consider the random Cantor

set A as in Section 3.1.4 with µ = kp. We have already noted that

the probability that A is nonempty is strictly positive if and only if

µ > 1. We will discuss the proof of the following theorem, leaving

some parts as exercises.
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Theorem 4.19. With probability one, the random Cantor set A is

either empty or has Hausdorff dimension logµ/ log k.

For ease we will only consider k = 2, but the argument is essen-

tially the same for all k. We choose p ∈ (1
2 , 1) so that µ = kp > 1 and

we let α = logµ/ log 2 so that 2α = µ.

Let In denote the set of dyadic intervals in [0, 1] of length 2−n.

Recall that A =
⋂

An where An is the union of Yn intervals in In.

Recall from Sections 3.5.1 and 3.6.1 that with probability one the

limit

(4.6) M∞ = lim
n→∞

µ−n Yn

exists and is positive provided that A 6= ∅. In particular, for n suffi-

ciently large,

Yn ≤ 2M∞ µn.

Since the random Cantor set can be covered by Yn intervals of diam-

eter 2−n, we can see that

Hα(A) ≤ Yn 2−nα ≤ 2M∞, µ
n 2−nα = 2M∞ <∞.

Therefore, with probability one, dimh(A) ≤ α. The lower bound is

more difficult.

It is not difficult to extend (4.6) as follows. If I ∈ Ij and n ≥ j,

let Yn(I) denote the number of intervals I ′ ∈ In such that I ′ ⊂ I.

Then with probability one, for each I,

M∞(I) := lim
n→∞

µ−n Yn(I),

exists and is strictly positive if I ∩A 6= ∅. Recalling that E[M∞] = 1,

we get

1 = E[M∞] = E

[

∑

I∈In

M∞(I)

]

=
∑

I∈In

E [M∞(I)]

=
∑

I∈In

P{I ∈ An}E[M∞(I) | I ∈ An]

= 2n pn
E[M∞(I) | I ∈ An].
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The last equality uses the fact that E[M∞(I) | I ∈ An] must be the

same for all I ∈ In. Therefore,

E [M∞(I) | I ∈ An] = µ−n, I ∈ In.

Viewed in this way, we can think of M∞ as a random measure that

assigns to dyadic intervals I the measure M∞(I). We can find M∞(I)

for other intervals I by writing I as a countable union of dyadic

intervals. Let us write this measure as m. Then Eβ(m) is a random

variable. The next proposition is the key estimate.

Proposition 4.20. If 0 ≤ β < α,

E [Eβ(m)] <∞.

In particular, with probability one, Eβ(m) <∞.

Before proving this, let us say why this implies the lower bound.

On the event that A 6= ∅, we know that m([0, 1]) > 0. Since for each

β < α, E [Eβ(m)] < ∞, we know that with probability one for all

β < α, Eβ(m) <∞.

♦ This is another case where we show that a positive random variable Z

is finite with probability one by showing that E[Z] < ∞. The technique does

not work for the converse. We cannot conclude that Z = ∞ with positive

probability by showing that E[Z] = ∞.

Proof. We will consider two distances or metrics ρ, d on the set In.

Let ρ be defined by ρ(I, I ′) = j if j is the smallest integer such that

there is an interval I ′′ ∈ In−j such that I ⊂ I ′′ and I ′ ⊂ I ′′. We will

use d for the Euclidean distance between intervals

d(I, I ′) = min{|x− y| : x ∈ I, y ∈ I ′}.
(This is not quite a metric because adjacent intervals are distance

zero apart, but this will not matter.) Note that if I, I ′ ∈ I with

ρ(I, I ′) ≤ j, then d(I, I ′) ≤ 2j−n. (There is no converse relation. It is

possible for intervals to be close in the d metric but far away in the

ρ metric). Also, if I ∈ In, then the number of intervals I ′ ∈ In with

d(I, I ′) ≤ 2j is less than 2j+2.
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If I, I ′ ∈ In, then
∫

I

∫

I′

m(dx)m(dy)

|x− y|β ≤
∫

I

∫

I′

m(dx)m(dy)

d(I, I ′)β
=
M∞(I)M∞(I ′)

d(I, I ′)β
.

Let

Eβ,ǫ(m) =

∫ ∫

|x−y|≥ǫ

m(dx)m(dy)

|x− y|β .

We claim that it suffices to show that there is a C = C(β) such that

for all ǫ,

E[Eβ,ǫ(m)] ≤ C.

Indeed,

Eβ(m) = lim
ǫ→0+

Eβ,ǫ(m)

and this is a monotone limit, so we may use the monotone convergence

theorem to conclude

E[Eβ(m)] ≤ C.

For each ǫ, if n is sufficiently large

E [Eβ,ǫ(m)](4.7)

≤
∑

I,I′∈In,d(I,I′)>2−n

E[M∞(I)M∞(I ′)]

d(I, I ′)β

≤
n
∑

j=0

∑

2−n+j<d(I,I′)≤2−n+j+1

E[M∞(I)M∞(I ′)]

d(I, I ′)β

≤
n
∑

j=0

2(n−j)β
∑

2−n+j<d(I,I′)≤2−n+j+1

E[M∞(I)M∞(I ′)].

Suppose I, I ′ ∈ In with ρ(I, I ′) = j. Then there is a common “an-

cestor” I ′′ ∈ In−j . Let F = Fn−j denote the information up through

the (n− j)th level. Then,

E[M∞(I)M∞(I ′) | F ]

= 1{I ′′ ∈ An−j}E [M∞(I) | I ′′ ∈ An−j ] E [M∞(I ′) | I ′′ ∈ An−j ]

= 2−2j µ2(j−n) 1{I ′′ ∈ An−j}.
Here we use

E [M∞(I) | I ′′ ∈ An−k] = 2−k
E [M∞(I ′′) | I ′′ ∈ An−k] = 2−k µk−n.
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Hence,

E [M∞(I)M∞(I ′)] = E [E[M∞(I)M∞(I ′) | F ]]

= 2−2j µ2(j−n)
P{I ′′ ∈ An−j}

= pn−j 2−2j µ2(j−n) = pn+j µ−2n.

If d(I, I ′) > 2j−n, then ρ(I, I ′) > j, and hence

E [M∞(I)M∞(I ′)] ≤ pn+j µ−2n, d(I, I ′) > 2j−n.

Let us return to (4.7). For a given I, there are at most c2j

intervals I ′ with d(I, I ′) ≤ 2j−n+1. Hence the number of ordered

pairs (I, I ′) satisfying this is bounded by c2n+j . Therefore,

∑

2−n+j<d(I,I′)≤2−n+j+1

E[M∞(I)M∞(I ′)] ≤ c 2n+j pn+j µ−2n = c µj−n,

and

E [Eβ,ǫ(m)] ≤ c

n
∑

j=0

2n−jβ µj−n ≤ c

∞
∑

j=0

2jβ µ−j := C <∞.

The last inequality uses 2β < µ which follows from 2α = µ.

�

Exercises

Exercise 4.1. Prove Lemma 4.3. Give an example to show that the

final statement is false for a = 0.

Exercise 4.2. We will construct a set A ⊂ [0, 1] for which the box

dimension does not exist. It will be a generalization of the Cantor

set. Suppose kn, jn are sequences of positive integers greater than 1.

Here is the construction.

• A0 = [0, 1]

• A1 is the finite union of j1 intervals of length l1 = (j1k1)
−1.

It is obtained by splitting [0, 1] into j1k1 equal intervals and

selecting j1 intervals by taking every k1th one. For example,
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if j1 = 3, k1 = 2, then l1 = 1/6 and the interval [0, 1] is

written as

[0, 1] =

[

0,
1

6

]

∪
[

1

6
,
2

6

]

∪ · · · ∪
[

5

6
, 1

]

,

and

A1 =

[

1

6
,
2

6

]

∪
[

3

6
,
4

6

]

∪
[

5

6
, 1

]

.

• Inductively, if An is given which is a disjoint union of Yn

intervals of length ln, then An+1 is obtained by dividing

each of the intervals into jn+1kn+1 equal pieces and taking

every kn+1th subinterval. Then An+1 is the disjoint union of

Yn+1 intervals of length ln+1 where Yn+1 = jn+1 Yn, ln+1 =

ln (jn+1kn+1)
−1.

(1) Show that if jn = j, kn = k, then D(A) is well-defined and

find D(A).

(2) Find an example of jn, kn such that D(A) is not defined.

Exercise 4.3. Let F : [0, 1] → [0, 1] be the Cantor function as defined

in (4.1).

• Show that F is continuous.

• Show that F ′(x) = 0 for x in the complement of the Cantor

set.

• True or false: if F : [0, 1] → R is continuous and F ′ exists

except perhaps on a set of measure zero, them

F (x) = F (0) +

∫ x

0

F ′(s) ds.

Exercise 4.4. Let m denote Cantor measure on [0, 1]. Show that if

I is a closed subinterval of [0, 1], then

m(I) ≤ l(I)α, α =
log 2

log 3
.

Use this to show that the Hausdorff α-measure of the Cantor set

equals one.

Exercise 4.5. Call a collection of subsets A of Rd a sigma-algebra

of subsets if
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• ∅ ∈ A.

• If V ∈ A, then Rd \ V ∈ A;

• If V1, V2, . . . ∈ A, then
∞
⋃

n=1

Vn ∈ A.

(1) Find a sigma-algebra A that contains all the open sets.

(2) Let

B =
⋂

A
where the intersection is over all sigma-algebras A that con-

tain all the open sets. Show that B is a sigma-algebra con-

taining the open sets. (This can be considered as the formal

definition of the Borel sets.)

Exercise 4.6.

(1) Show that H0(A) equals the number of elements of A.

(2) Show that if A is a countable, then Hα
ǫ (A) = 0 for all α, ǫ >

0.

Exercise 4.7. Let A be a random Cantor set as in Section 3.1.4.

Show that for each x ∈ [0, 1],

P{x ∈ A} = 0.

Conclude that if V ⊂ [0, 1] is a countable set,

P{A ∩ V = ∅} = 1.

Exercise 4.8. In the scientific literature, fractal dimensions of irreg-

ular sets in the plane are sometimes estimated by dividing the plane

into squares of side length ǫ for small and counting the number of

these squares that intersect the set. Is this technique more like the

box dimension or the Hausdorff dimension? Can you make any pre-

cise mathematical statements relating this procedure to either box or

Hausdorff dimension?


