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I *Strichartz: A fractafold, a space that is locally modeled on a
specified fractal, is the fractal equivalent of a manifold.

I A “fractafold” is to a fractal what a manifold is to a
Euclidean half-space.
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FRACTAFOLDS BASED ON THE SIERPINSKI GASKET

AND THEIR SPECTRA

ROBERT S. STRICHARTZ

Abstract. We introduce the notion of “fractafold”, which is to a fractal what
a manifold is to a Euclidean half-space. We specialize to the case when the
fractal is the Sierpinski gasket SG. We show that each such compact fractafold
can be given by a cellular construction based on a finite cell graph G, which is
3-regular in the case that the fractafold has no boundary. We show explicitly
how to obtain the spectrum of the fractafold from the spectrum of the graph,
using the spectral decimation method of Fukushima and Shima. This enables
us to obtain isospectral pairs of nonhomeomorphic fractafolds. We also show
that although SG is topologically rigid, there are fractafolds based on SG that
are not topologically rigid.

1. Introduction

Let K be a fractal [F]. Then a fractafold F based on K is a connected Hausdorff
topological space such that every point x in F has a neighborhood homeomorphic
to a neighborhood in K. There is no generally agreed upon definition of “fractal”,
other than “I know one when I see one”, but there are several well-defined classes of
fractals, such as Kigami’s p.c.f. (post-critically finite) self-similar fractals [Ki1]. We
are interested in this class of fractals because one can do analysis on them: under
certain additional hypotheses, one can construct a Laplacian ∆ on K and study
properties of the spectrum of ∆. (Of course it should be emphasized here that the
Laplacian is not uniquely determined by the topology of K, but rather depends
on certain additional geometric structures, just as the Laplacian on a manifold
depends on the choice of a Riemannian metric.) One of the purposes of introducing
fractafolds in this context is that we may easily extend the Laplacian from K to
F , and thereby obtain a larger class of objects on which to do analysis ([B], [Ki1],
[Ki2], [S2]).

We will mainly deal with the case K = SG, the Sierpinski gasket. Recall that SG
is the attractor of the ifs (iterated function system) in the plane consisting of three
homotheties (F1, F2, F3) with contraction ratio 1/2 and fixed-points equal to the
three vetices (q1, q2, q3) of an equilateral triangle. Then SG is the unique nonempty
compact set satisfying

(1.1) SG =

3⋃

i=1

Fi(SG).
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Physics motivation (Intro 1)

I R. Rammal and G. Toulouse, Random walks on fractal structures
and percolation clusters. J. Physique Letters 44 (1983)

I R. Rammal, Spectrum of harmonic excitations on fractals. J.
Physique 45 (1984)

I E. Domany, S. Alexander, D. Bensimon and L. Kadanoff,
Solutions to the Schrödinger equation on some fractal lattices.
Phys. Rev. B (3) 28 (1984)

I Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on
fractals. I. Quasilinear lattices. II. Sierpiński gaskets. III. Infinitely
ramified lattices. J. Phys. A 16 (1983)17 (1984)
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François Englert

François Englert in Israel, 2007

Born 6 November 1932 

Etterbeek, Brussels, Belgium[1]

Nationality Belgian

Fields Theoretical physics

Institutions Université Libre de Bruxelles

Tel Aviv University[2][3]

Alma mater Université Libre de Bruxelles

Notable awards Francqui Prize (1982)

Wolf Prize in Physics (2004)

Sakurai Prize (2010)

Nobel Prize in Physics (2013)

François Englert
From Wikipedia, the free encyclopedia

François Baron Englert (French: [ɑɡ̃lɛʁ]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,
C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.[4] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,
together with Peter Higgs and the CERN.

Englert was awarded the 2013 Nobel Prize in Physics,
together with Peter Higgs for the discovery of the Higgs

mechanism.[5]
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METRIC SPACE-TIME AS FIXED POINT 

OF THE RENORMALIZATION GROUP EQUATIONS 

ON FRACTAL STRUCTURES 
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We take a model of foamy space-time structure described by self-similar fractals. We study 
the propagation of a scalar field on such a background and we show that for almost any initial 
conditions the renormalization group equations lead to an effective highly symmetric metric at 
large scale. 

1. Introduction 

Quantum gravity presents a potential difficulty which persists in any unification 

program which incorporates gravity in the framework of a local field theory in 

dimensions d > 4. In all such theories a local O ( d - 1 , 1 )  space-time symmetry is 
quite generally assumed at the outset as a "kinematical" symmetry of the classical 

action. Such an extrapolation from relatively large distances, where the symmetry 

0(3 ,1)  is tested to a genuine local property is questionable. Indeed, the unbounded- 
ness of the Einstein curvature term in the analytically continued euclidean action 

signals violent fluctuations near the Planck scale. Hence a "foamy" fractal space-time 
structure is expected [1], from which the average metric below this scale should 
emerge in a dynamical way. There is no obvious reason why a smooth effective 

metric should at all be generated, and even if it were, why it should bear any 
relation to the "bare" symmetrical local metric imposed on the "fundamental" 

1 Chercheur qualifi~ du FNRS. 
2 Chercheur IISN. 

0619-6823/87/$03.50©Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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Fig. 1. The first two iterations of a 2-dimensional 3-fractal. 

tive integers v i (i = 1 . . . . .  d)  such that their s u m  Y~./d=lP i is less or equal to n. All 
these points are contained in the hypertetrahedron bounded by the coordinate 
hyperplanes and the E~a=lVi = n hyperplane. We distinguish interior points and 
points belonging to a k-face (k < d), that is points characterized by a set of 
coordinates vj which contains d - k  subsets s such that ~ ,  ~svi = 0 (mod n). Every 
point belongs to the boundary of at least one sub-hypertetrahedron and two points 
are called neighbours if they belong to the same sub-hypertetrahedron. One goes 
from a point to one of its neighbours by one of the elementary translations t i and lij 
defined as: 

_+ ti: v~--+ v~: ,  where v~ = v k if k :~ i, 

v" = v i + 1 ; 

l q : v}--+ vj  , w h e r e  v'k = v k i f  i 4= k --t= j ; 

v" = v i + 1, 

v~ = v j -  1. (2.1) 

In general, an interior point admits d ( d  + 1) neighbours reached by the 2d transla- 
tions ___t i and the d ( d - 1 )  l q  translations. If a point belongs to a k-face of the 
hypertetrahedron, some of these operations reach a point outside the initial hyperte- 
trahedron. Actually, points belonging to a k-face have only d ( k  + 1) neighbours. 
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = /3/(,8 + 1) separates the domain of euclidean 
metrics from minkowskian metrics and corresponds - except at the origin - to 1-dimensional metrics. ML, M 2, Ma denote unstable minkowskian 
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 01, 0 2 and 0 3 associated to 0-dimensional 
geometries are located at the origin and at infinity on the (a, /~) coordinates axis. The six straight lines are subsets invariant with respect to the 
recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of 

them the 10th point (a  = -56 .4 , /3  = -52 .5)  is outside the frame of the figure. 
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding 
to the euclidean fixed point. Vertices are labelled according to fig. 4. 

angles of the cell without its base, that is 57r, minus the sum of the angles not 
belonging to the cell and touching the 3 exterior vertices of the cell, that is 
6~r - ~r = 5~r. We find thus that the curvature of a cell is zero, which is consistent 
with the assumption that the space surrounding the cell is flat. 

Though the exact value of the curvature at each vertex of a cell is subject to some 
arbitrariness, because of the arbitrariness showed in the previous section of the 
normalization of the ?~i9's at successive levels, one easily verifies that, for the 
homogeneous metrics considered here, all the non-zero cancelling curvatures are 
located at the cell boundaries. The vertices belonging to the p and (p  + 1) levels ot 
fractalization have negative curvature, the others have positive curvature. 

Consider now a metric n-fractal, n >> 1, cutoff after the first iteration (or 
equivalently a ( p -  1) triangle in a fractal cutoff at the p th  level). The result is a 
triangular lattice. Because the integrated curvature of any cell is zero, the inside of 
the lattice is correctly described on the average by a locally flat metric. From 
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Figure 6.4. Geometric interpretation of Proposition 6.1.

7. Effective resistance metric, Green’s function
and capacity of points

We first recall from [Ki4] some facts about limits of resistance networks.
Although we state all the results of this section for the Sierpiński gasket,
they can be applied to general pcf fractals with only minor changes.

Let E(f, f) be defined by (1.2) for any function f on V∗, where En is a
compatible sequence of Dirichlet forms on Γn.

Proposition 7.1. Every point of V∗ =
⋃

n≥0 Vn has positive capacity.

Proof. Let x ∈ V∗. Then x ∈ Vn for some n. The capacity of {x} with respect
to E is the same as that with respect to En because of the compatibility of
the sequence of networks. The latter capacity is positive because Vn is a
finite set. �

The effective resistance is defined for any x, y ∈ V∗ by

R(x, y) =
(
minu{E(u, u) : u(x) = 1, u(y) = 0}

)−1
.(7.1)

Here the minimum is taken over all functions on V∗. Note that x, y ∈ Vn
for large enough n and that (7.1) does not change if E is replaced by En,
because of the compatibility condition (see [Ki4], Proposition 2.1.11). By
Theorem 2.1.14 in [Ki4], R(x, y) is a metric on V∗. In what follows we will
write R-continuity, R-closure etc. for continuity, closure etc. with respect to
the effective resistance metric R. It is known that if E(u, u) < ∞ then u is
R-continuous ([Ki4], Theorem 2.2.6(1)). The main ingredient in the proof
of this fact is the inequality

|u(x)− u(y)|2 ≤ R(x, y)E(u, u).(7.2)

Let Ω be the R-completion of V∗. We can conclude from (7.2) that if u
is a function on V∗ such that E(u, u) <∞ then u has a unique continuation



The Spectral Dimension of the Universe is Scale Dependent
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We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
‘‘self-renormalizing’’ at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOI: 10.1103/PhysRevLett.95.171301 PACS numbers: 04.60.Gw, 04.60.Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator?—A shared
hope of researchers in otherwise disparate approaches to
quantum gravity is that the microstructure of space and
time may provide a physical regulator for the ultraviolet
infinities encountered in perturbative quantum field theory.

tral dimension, a diffeomorphism-invariant quantity ob-
tained from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-
curacy, it is equal to four, in agreement with earlier mea-
surements of the large-scale dimensionality based on the
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d logP���
d log�

� a�
b

�� c
(10)

agrees best with the data. In Fig. 1, the curve

DS��� � 4:02�
119

54� �
(11)

has been superimposed on the data, where the three con-
stants were determined from the entire data range � 2
�40; 400�. Although both b and c individually are slightly
altered when one varies the range of �, their ratio b=c as
well as the constant a remain fairly stable. Integrating
relation (10), we have

P��� �
1

�a=2�1� c=��b=2c
; (12)

implying a behavior

P��� �
�
��a=2 for large �;
���a�b=c�=2 for small �:

(13)

Our interpretation of Eqs. (12) and (13) is that the quantum
geometry generated by CDT does not have a self-similar
structure at all distances, but instead has a scale-dependent
spectral dimension which increases continuously from a�
b=c to a with increasing distance.

Taking into account the variation of a in Eq. (10) when
using various cuts ��min; �max� for the range of �, as well
as different weightings of the errors, we obtain the asymp-
totic value

DS�� � 1� � 4:02
 0:1; (14)

which means that the spectral dimension extracted from
the large-� behavior (which probes the long-distance
structure of spacetime) is compatible with four. On the
other hand, the ‘‘short-distance spectral dimension,’’ ob-
tained by extrapolating Eq. (12) to �! 0 is given by

DS�� � 0� � 1:80
 0:25; (15)

and thus is compatible with the integer value two.
Discussion.—The continuous change of spectral dimen-

sion described in this Letter constitutes to our knowledge
the first dynamical derivation of a scale-dependent dimen-
sion in full quantum gravity. (In the so-called exact renor-
malization group approach to Euclidean quantum gravity, a
similar reduction has been observed recently in an
Einstein-Hilbert truncation [12].) It is natural to conjecture
it will provide an effective short-distance cutoff by which
the nonperturbative formulation of quantum gravity em-
ployed here, causal dynamical triangulations, evades the
ultraviolet infinities of perturbative quantum gravity.
Contrary to current folklore (see [13] for a review), this
is done without appealing to short-scale discreteness or
abandoning geometric concepts altogether.

Translating our lattice results to a continuum notation
requires a ‘‘dimensional transmutation’’ to dimensionful
quantities, in accordance with the renormalization of the

lattice theory. Because of the perturbative nonrenormaliz-
ability of gravity, this is expected to be quite subtle. CDT
provides a concrete framework for addressing this issue
and we will return to it elsewhere. However, since � from
(1) can be assigned the length dimension two, and since we
expect the short-distance behavior of the theory to be
governed by the continuum gravitational coupling GN , it
is tempting to write the continuum version of (10) as

PV��� �
1

�2

1

1� const:�GN=�
; (16)

where const. is a constant of order one. Using the same
naı̈ve dimensional transmutation, one finds that our ‘‘uni-
verse’’ of 181.000 discrete building blocks has a spacetime
volume of the order of �20lPl�

4 in terms of the Planck
length lPl, and that the diffusion with � � 400 steps cor-
responds to a linear diffusion depth of 20lPl, and is there-
fore of the same magnitude. The relation (16) describes
a universe whose spectral dimension is four on scales
large compared to the Planck scale. Below this scale,
the quantum-gravitational excitations of geometry lead
to a nonperturbative dynamical dimensional reduction
to two, a dimensionality where gravity is known to be
renormalizable.

*Electronic address: ambjorn@nbi.dk
Email address: j.ambjorn@phys.uu.nl

†Electronic address: jurkiewicz@th.if.uj.edu.pl
‡Electronic address: r.loll@phys.uu.nl
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Fractal space-times under the microscope:

a renormalization group view on Monte Carlo data

Martin Reuter and Frank Saueressig
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Abstract: The emergence of fractal features in the microscopic structure of space-time

is a common theme in many approaches to quantum gravity. In this work we carry out a

detailed renormalization group study of the spectral dimension ds and walk dimension dw
associated with the effective space-times of asymptotically safe Quantum Einstein Grav-

ity (QEG). We discover three scaling regimes where these generalized dimensions are ap-

proximately constant for an extended range of length scales: a classical regime where

ds = d, dw = 2, a semi-classical regime where ds = 2d/(2+d), dw = 2+d, and the UV-fixed

point regime where ds = d/2, dw = 4. On the length scales covered by three-dimensional

Monte Carlo simulations, the resulting spectral dimension is shown to be in very good

agreement with the data. This comparison also provides a natural explanation for the ap-

parent puzzle between the short distance behavior of the spectral dimension reported from

Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and

Asymptotic Safety.

Keywords: Models of Quantum Gravity, Renormalization Group, Lattice Models of Grav-

ity, Nonperturbative Effects

ArXiv ePrint: 1110.5224

c© SISSA 2011 doi:10.1007/JHEP12(2011)012



Fractal space-times under the microscope: A
Renormalization Group view on Monte Carlo data
(Martin Reuter, Frank Saueressig):

Three scaling regimes of the effective space-times of asymptotically
safe Quantum Einstein Gravity (QEG):

1. a classical regime ds = d, dw = 2,
2. a semi-classical regime ds = 2d/(2 + d), dw = 2 + d ,
3. the UV-fixed point regime ds = d/2, dw = 4.

On the length scales covered by three-dimensional Monte Carlo
simulations, the resulting spectral dimension is in very good
agreement with the data and provides a natural explanation for the
apparent puzzle between the short distance behavior of the spectral
dimension reported from Causal Dynamical Triangulations (CDT),
Euclidean Dynamical Triangulations (EDT), and Asymptotic Safety.

I Mathav Murugan: dw = df consistent with ds = 2df/dw = 2
I Growth and percolation on the uniform infinite planar

triangulation by Omer Angel (GAFA 2003)
I Anomalous diffusion of random walk on random planar maps by

Ewain Gwynne and Tom Hutchcroft (PTRF 2020)









Group Theory and Complex Dynamics (Intro 2)

The basilica Julia set, the Julia set of z2 − 1 and the limit set of the
basilica group of exponential growth (Grigorchuk, Żuk, Bartholdi,

Virág, Nekrashevych, Kaimanovich, Nagnibeda et al.).



Asymptotic aspects of Schreier graphs and Hanoi Towers groups

Rostislav Grigorchuk 1, Zoran Šuniḱ
Department of Mathematics, Texas A&M University, MS-3368, College Station, TX, 77843-3368, USA

Received 23 January, 2006; accepted after revision +++++

Presented by Étienne Ghys

Abstract

We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier

graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since

they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite

this article: R. Grigorchuk, Z. Šuniḱ, C. R. Acad. Sci. Paris, Ser. I 344 (2006).
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Heat Kernel Estimates and Dirichlet Forms (Intro 3)

pt (x, y) ∼
1

tdf/dw
exp

(
−c

d(x, y)
dw

dw−1

t
1

dw−1

)

distance ∼ (time)
1

dw

df = Hausdorff dimension
1
γ

= dw = “walk dimension” (γ=diffusion index)
2df
dw

= ds = “spectral dimension” (diffusion dimension)

First example: Sierpiński gasket; Kusuoka, Fukushima, Kigami,
Barlow, Bass, Perkins (mid 1980’—)



Stability Theorem (Barlow, Bass, Kumagai (2006))

Under natural assumptions on the MMD (geodesic Metric Measure
space with a regular symmetric conservative Dirichlet form), the
sub-Gaussian heat kernel estimates are stable under rough
isometries, i.e. under maps that preserve distance and energy up to
scalar factors.

Gromov -Hausdorff + energy



Theorem. (Barlow, Bass, Kumagai, T. (1989–2010).) On any
generalized Sierpiński carpet there exists a unique, up to a scalar
multiple, local regular Dirichlet form that is invariant under the local
isometries.

Therefore there is a unique symmetric Markov process and
a unique Laplacian.

Moreover, the Markov process is strong Feller and its transition
density satisfies sub-Gaussian heat kernel estimates.

Main difficulties:If it is not a cube in Rn, then
I dS < df , dw > 2
I the energy measure and the Hausdorff measure are mutually

singular;
I the domain of the Laplacian is not an algebra;
I if d(x, y) is the shortest path metric, then d(x, ·) is not in the

domain of the Dirichlet form (not of finite energy) and so methods
of Differential geometry seem to be not applicable;

I Lipschitz functions are not of finite energy;
I in fact, we can not compute any functions of finite energy;
I Fourier and complex analysis methods seem to be not

applicable.



A0

A1

A′1 s
v∗

The half-face A1 corresponds to a “slide move”,
and the half-face A′1 corresponds to a “corner move”,

analogues of the “corner” and “knight’s” moves in [BB89].
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However, it seems the uniqueness can fail in some natural settings,
such as repeated barycentric subdivisions.

Theorem (Kelleher, Panzo, Brzoska, T.). The dual triangular and
edge graphs have reciprocal resistance scaling factors ρ = 1/ρT with
5/4 < ρ < 3/2.

Conjecture. The reflection-invariant
Dirichlet form is not unique.

2 D. J. KELLEHER, H. PANZO, A. BRZOSKA AND A. TEPLYAEV

Figure 1. Barycentric subdivision of a 2-simplex, the graphs GT
0 ,

GT
1 and GT

2 .

Figure 2. Adjacency (dual) graph G2, in bold, and the barycen-
tric subdivision graph pictured together with the thin image of
GT

2 .

heat kernel estimates (see [2–4, 6, 7, 9] and references therein). Typically for
such fractal examples, Lipschitz functions play little or no role, as intrinsically
smooth functions are only Hölder continuous. In some sense all these results
are related to the Nash-Moser theory of uniformly elliptic operators. However,
there are natural spaces that have no volume doubling, no curvature bounds,
and no heat kernel estimates. Analysis of such spaces is in its infancy, and
considering even simplest examples is very challenging. After laying some of the
initial framework for this model, our aim is to connect to a series of other works,
such as [11,30,43–45,58,65].

The repeated barycentric subdivision of a simplex is a classical and fundamen-
tal notion from algebraic topology, see [31, and references therein]. Recently it
was considered from a probabilistic point of view in [17–20,69] and graph theory
point of view in [51, 52]. Understanding how resistance scales on finite approxi-
mating graphs is the first step to developing analysis on fractals and fractal-like
structures, such as self-similar graphs and groups, see [8, 23, 40, 62, 63, and ref-
erences therein]. For finitely ramified post-critically finite fractals, including
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Figure 3. On the left: the graph GT
4 for barycentric subdivision

of a 2-simplex. On the right: the adjacency (dual) graph G4.

nested fractals, the resistance scales by the same factor between any two lev-
els of approximating graphs (see [46, 47, 57, and references therein]), and this
fact can be used to prove the existence and uniqueness of a Dirichlet form on
the limiting fractal structures. In the infinitely ramified case, resistance esti-
mates are more difficult to obtain, but are just as important to understanding
diffusions on fractals. Barlow and Bass [2–4, 6, 7, 9] proved such estimates for
the Sierpinski carpet and its generalizations. These techniques were extended
to understanding resistance estimates between more complicated regions of the
Sierpinski carpet, see [60]. The paper [53] provides another technique for prov-
ing the existence of Dirichlet forms on non-finitely ramified self-similar fractals,
which estimates the parameter ρ by studying the Poincaré inequalities on the
approximating graphs of the fractals. The long term motivation for our work
comes from probability and analysis on fractals [5,13,14,61,64,66], vector anal-
ysis for Dirichlet forms [33–35, 37–39, 54], and especially from the works on the
heat kernel estimates [3, 6, 7, 24, 27,41,42,48–50,55,56,67].

In general terms, a Dirichlet form on a fractal is a bilinear form which is
analogous to the classic Dirichlet energy on Rd given by E (f) =

∫
|∇f |2 dx.

Dirichlet forms have many applications in geometry, analysis and probability.
The theory of Dirichlet forms is equivalent, in a certain sense, to the theory of
symmetric Markov processes, see [15, 16, 22]. The potential theoretic properties
of the Dirichlet form have implications for this stochastic process. In particular,
the resistance between two boundary sets is related to the crossing times. In
the discrete setting, the Dirichlet form is the graph energy. In this case the
resistance between two sets is determined using Kirchhoff’s laws. For a more
thorough introduction to these topics, one can see, for example, [21,59].

Although the results of Barlow and Bass et al are applicable to a large class
of fractals, we concentrate on one prototypical but difficult to analyze gener-
alization of the classical Sierpinski carpet. Our work further develops existing



Spectral analysis (Intro 4)

Theorem. (Derfel, Grabner, Vogl; T.; Kajino (2007–2011)) For a large
class of finitely ramified symmetric fractals, which includes the
Sierpiński gaskets, and may include the Sierpiński carpets, the
spectral zeta function

ζ(s) =
∑

λ
s/2
j

has a meromorphic continuation from the half-pain Re(s) > dS to C.
Moreover, all the poles and residues are computable from the
geometric data of the fractal. Here λj are the eigenvalues if the
unique symmetric Laplacian.

I Example: ζ(s) is the Riemann zeta function up to a trivial factor
in the case when our fractal is [0, 1].

I In more complicated situations, such as the Sierpiński gasket,
there are infinitely many non-real poles, which can be called
complex spectral dimensions, and are related to oscillations in
the spectrum.
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Poles (white circles) of the spectral zeta function of the Sierpiński gasket.



A part of an infinite Sierpiński gasket.
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Figure: An illustration to the computation of the spectrum on the
infinite Sierpiński gasket. The curved lines show the graph of the
function R(·).

Theorem. (T. 1998, Quint 2009) On the Barlow-Perkins infinite
Sierpiński fractafold the spectrum of the Laplacian consists of a
dense set of eigenvalues R−1(Σ0) of infinite multiplicity and a
singularly continuous component of spectral multiplicity one
supported on R−1(JR).



The Tree Fractafold.
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An eigenfunction on the Tree Fractafold.
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Theorem. (Strichartz, T. 2010) The Laplacian on the periodic
triangular lattice finitely ramified Sierpiński fractal field consists of
absolutely continuous spectrum and pure point spectrum. The
absolutely continuous spectrum is R−1[0, 16

3 ]. The pure point
spectrum consists of two infinite series of eigenvalues of infinite
multiplicity. The spectral resolution is given in the main theorem.



Elements of differerential geometry (Intro 5)

I J. Cheeger, Differentiability of Lipschitz functions on metric
measure spaces, Geom. Funct. Anal. (1999)

I J. Heinonen, Lectures on analysis on metric spaces. Universitext
2001. Nonsmooth calculus, Bull. Amer. Math. Soc. (2007)

I J. Heinonen, P. Koskela, N. Shanmugalingam, J. Tyson, Sobolev
classes of Banach space-valued functions and quasiconformal
mappings. J. Anal. Math. 85 (2001)

I M. Bonk, L. Capogna, and X. Zhou, Green functions in metric
measure spaces, Preprint, November 2022

Can we define harmonic differential forms, a de Rham complex, and
obtain a version of de Rham’s theorem?



Standard self-similar carpet Sa
with a = ( 1

3 ,
1
3 ,

1
3 , ...)

MODULUS AND POINCARÉ INEQUALITIES ON CARPETS 3

The validity of a Poincaré inequality in the sense of Definition 1.3 reflects strong connectivity
properties of the underlying space. Roughly speaking, metric measure spaces (X, d, µ) supporting
a Poincaré inequality have the property that any two regions are connected by a rich family of
relatively short curves which are evenly distributed with respect to the background measure µ.
(For a more precise version of this statement, see Theorem 2.1.) The main results of this paper are
a reflection and substantiation of this general principle in the setting of a highly concrete collection
of planar examples.

We now turn to a description of those examples. To each sequence a = (a1, a2, . . .) consisting of
reciprocals of odd integers strictly greater than one we associate a modified Sierpiński carpet Sa

by the following procedure. Let T0 = [0, 1]2 be the unit square and let Sa,0 = T0. Consider the
standard tiling of T0 by essentially disjoint closed congruent subsquares of side length a1. Let T1
denote the family of such subsquares obtained by deleting the central (concentric) subsquare, and
let Sa,1 = ∪{T : T ∈ T1}. Again, let T2 denote the family of essentially disjoint closed congruent
subsquares of each of the elements of T1 with side length a1a2 obtained by deleting the central
(concentric) subsquare from each square in T1, and let Sa,2 = ∪{T : T ∈ T2}. Continuing this
process, we construct a decreasing sequence of compact sets {Sa,m}m≥0 and an associated carpet

Sa :=
⋂

m≥0

Sa,m.

For example, when a = (13 ,
1
3 ,

1
3 , . . .), the set Sa is the classical Sierpiński carpet S1/3 (Figure 1).

For any a, Sa is a compact, connected, locally connected subset of the plane without interior and
with no local cut points. By a standard fact from topology, Sa is homeomorphic to the Sierpiński
carpet S1/3.

For each k ∈ N, we will denote by S1/(2k+1) the self-similar carpet Sa associated to the constant

sequence a = ( 1
2k+1 ,

1
2k+1 ,

1
2k+1 , . . .). For each k, the carpet S1/(2k+1) has Hausdorff dimension equal

to

(1.2) Qk =
log((2k + 1)2 − 1)

log(2k + 1)
=

log(4k2 + 4k)

log(2k + 1)
< 2

and is Ahlfors regular in that dimension.
The starting point for our investigations was the following well-known fact.

Proposition 1.4. For each k, the carpet S1/(2k+1), equipped with Euclidean metric and Hausdorff
measure in its dimension Qk, does not support any Poincaré inequality.

Figure 1. S1/3 Figure 2. S(1/3,1/5,1/7,...)Non self-similar carpet Sa
with a = ( 1

3 ,
1
5 ,

1
7 ...)

Proposition
(Mackay/Tyson/Wildrick’13) If a ∈ l2 then Sa has positive two dim
Lebesgue measure and “all classical-type Sobolev inequalities”.

Theorem (Hinz/T. ’15)
1-dim Hodge-Helmholtz composition holds (despite that dimH = 2).

Theorem (Hinz/T. ’17)
If a ∈ l2, limn→∞

a1···an−1

an
= 0 then dom(curl∗) = {0} and

(curl,C1) is not closable.



BV and Besov spaces on fractals with Dirichlet forms
(Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen,
Luke Rogers, Nages Shanmugalingam, T.)

References:

Besov class via heat semigroup on Dirichlet spaces

I: Sobolev type inequalities
arXiv:1811.04267 J. Funct. Analysis (2020)

II: BV functions and Gaussian heat kernel estimates
arXiv:1811.11010 Calc. Var. PDE (2020)

III: BV functions and sub-Gaussian heat kernel estimates
arXiv:1903.10078 Calc. Var. PDE (2021)

BV functions and fractional Laplacians on Dirichlet spaces
arXiv:1910.13330 revised December 2022

+ recent papers by Alonso-Ruiz, Fabrice Baudoin, Li Chen



sub-Gaussian Heat Kernel Estimates (sGHKE)

pt (x, y) ∼
1

tdf/dw
exp

(
−c

d(x, y)
dw

dw−1

t
1

dw−1

)

distance ∼ (time)
1

dw

df = Hausdorff dimension
1
γ

= dw = “walk dimension” (γ=diffusion index)
2df
dw

= dS = “spectral dimension” (diffusion dimension)

First example: Sierpiński gasket; Kusuoka, Fukushima, Kigami,
Barlow, Bass, Perkins (mid 1980’—)



1 = dt = dmart < dtH = ln 2
ln 3 +1 < dS < df = ln 8

ln 3 < 2 < dw

For Sierpinski carpets there exists a unique Dirichlet form and
diffusion process due to [Barlow and Bass 1998, 1999] (see also
[B-B-Kumagai-T 2010])



Open questions:
On the Sierpinski carpet,

κ = dW − df + dtH − 1 = dW − df +
log 2
log 3

would give the best Hölder exponent for harmonic functions?
[Strongly supported by numerical results: L.Rogers et al]

Note that (dW − df ) –Hölder continuity is classical:
Martin Barlow. Diffusions on fractals. In Lectures on probability
theory and statistics (Saint-Flour, 1995), volume 1690 of Lecture
Notes in Math., pages 1–121. Springer, Berlin, 1998.
Martin Barlow. Heat kernels and sets with fractal structure. In
Heat kernels and analysis on manifolds, graphs, and metric
spaces (Paris, 2002), volume 338 of Contemp. Math., pages 11–40.
Amer. Math. Soc., Providence, RI, 2003



Here dtH =
ln 2
ln 3

+ 1 is the topological-Hausdorff dimension of the

Sierpinski carpet defined in Theorem 5.4 in:

[R.Balka, Z.Buczolich, M.Elekes. A new fractal dimension: the
topological Hausdorff dimension. Adv. Math. 2015.]

Roughly speaking,
dtH :=

1+ inf{Hausdorff dim. of boundaries of a base of open sets}

Barlow (Proceedings of SMS Montreal, 2011):

ANALYSIS ON THE SIERPINSKI CARPET 11

A simpler argument, also using the (local) reflection symmetry of F̃ , gives a
weak lower bound on the probability of hitting small balls: if y ∈ B(x0, R/2dL),
λ ∈ (0, 1/10dL), then for the process W =W x0 ,

(2.8) Px(TB(y,λR) < τx0,R) > p0λ
γ .

Here p0 and γ > 0 depend only on F .
If h is harmonic on B = B(x0, R) then h(W x) is a martingale. Hence if

T = τB(W
x) ∧ τB(W y),

h(x)− h(y) = E(h(W x
T )− h(W y

T ))

= E(h(W x
T )− h(W y

T );T < TC)

≤ P(T < TC) sup
x,y∈B

(h(x) − h(y)) ≤ (1− pF ) sup
x,y∈B

(h(x) − h(y)).

Hence, writing
Osc
A
f = sup

A
f − inf

A
f,

and B′ = B(x0, R/2dL), we have

(2.9) Osc
B′

h ≤ (1− pF )Osc
B
h.

This oscillation inequality is not quite enough on its own to give the Harnack
inequality – see the example in [Ba3]. However, combined with (2.8) a standard
argument (see for example [FS]) gives the elliptic Harnack inequality Theorem 2.9.

We have three ‘scale factors’ for the SC:
1. L = LF , the length scaling factor.
2. M =MF , the volume scaling factor.
3. ρ, the ‘resistance scaling factor’.

As stated above, for the basic SC in d dimensions, L = 3, and M = 3d − 1. For
[0, 1]d (which can be regarded as a trivial SC) if L = 3 then M = 3d and ρ = 32−d.
Recall the definition of df from (2.1), and set

dw(F ) = dw =
logMρ

logL
.

dw was called by physicists the walk dimension and is related to space time scaling
of the heat equation. It turns out that one always has dw ≥ 2: for the SC in d
dimensions this follows from the lower bound in (2.6).

Given a regular fractal F , since L and M are given by the construction, one
can calculate df easily. The constant ρ which gives dw is somehow deeper, and
seems to require some analysis on the set or its approximations. Loosely one can
say that df is a ‘geometric’ constant, while dw is an ‘analytic’ constant. One may
guess that in some sense ρ or β are in general inaccessible by any purely geometric
argument. (An exception is for trees, where one has dw = 1 + df .)

The two inputs (Theorem 2.8 and Theorem 2.9) lead to good control of the

heat equation in F̃ .

Theorem 2.11. [BB5] Let pt(x, y) be the heat kernel on the pre-SC F̃ . Then
writing β = dw

(2.10) pt(x, y)
(c)≍ cµ(B(x, t1/β))−1 exp(−c(d(x, y)β/t)1/(β−1)),

for (t, x, y) such that t ≥ 1 ∨ d(x, y).



BV and weak Bakry-Émery non-negative curvature

Definition
BV (X) := KSλ

#
1 ,1(X) = B1,α#

1 (X) with α#
1 =

λ#
1

dW
the L1–Besov

critical exponent, and for f ∈ BV (X)

Var(f ) := lim inf
r→0+

∫∫

∆r

|f (y)− f (x)|
rλ

#
1 µ(B(x, r))

dµ(y) dµ(x).

Definition
We say that (X , µ, E,F) satisfies the weak-Bakry-Émery
non-negative curvature condition wBE(κ) if there exist a constant
C > 0 and a parameter 0 < κ < dW such that for every t > 0,
g ∈ L∞(X , µ) and x, y ∈ X ,

|Ptg(x)− Ptg(y)| ≤ C
d(x, y)κ

tκ/dW
‖g‖L∞(X ,µ). (1)



I If (X , d, µ) satisfies wBE(κ) with κ = dW
2 , then the form E

admits a carré du champ operator, which means that dw = 2 by
[Kajino-Murugan 2019 Ann. Probab. 48 November 2020]

I For nested fractals λ#
1 = λ∗1 = dWα

∗
1 = df

I For the Sierpinski carpet we conjecture

λ#
1 = λ∗1 = df − dtH + 1, where dtH =

ln 2
ln 3

+ 1 is the

topological-Hausdorff dimension of the Sierpinski carpet



Open question (Martin Barlow): Are there two fractals
with the same values of df , dw but different critical
exponents α∗1?

Preliminary answer is positive if we compare the SC and

Fitzsimmons PJ, Hambly BM, Kumagai T. Transition density
estimates for Brownian motion on affine nested fractals. Comm.
Math. Phys. 1994

based on: Jun Kigami 1992: Hausdorff dimensions of self-similar
sets and shortest path metrics. J. Math. Society of Japan. 1995



Open question (Martin Barlow) follow-up:
Can we construct

I a p.c.f. self-similar fractal, as in Kigami 1993
I with two-sided sub-Gaussian Heat Kernel Estimates
I for any pair of real numbers df , ds

df > 1,
2df

df + 1
6 ds 6 df

ds = 2dR
dR+1 if dR <∞. See also: Martin Barlow. Which values of

the volume growth and escape time exponent are possible for a
graph? Rev. Mat. Iberoamericana, 2004. Ben Hambly. On the
asymptotics of the eigenvalue counting function for random
recursive Sierpinski gaskets. Probab. Theory Rel. Fields 2000.
Brownian motion on a random recursive Sierpinski gasket. Ann.
Probab. 1997. Brownian motion on a homogeneous random
fractal. Probab. Theory Rel. Fields 1992. Jun Kigami, Michel
Lapidus. Weyl’s problem for the spectral distribution of Laplacians on
pcf self-similar fractals. Comm. Math. Phys. 1993.



1. self-similar fractals, Jun Kigami 1989-2009,
2. Patrick Fitzsimmons, Ben Hambly, Takashi Kumagai 1994
3. Laakso 2000 ...
4. Martin Barlow and Steven Evans 2004
5. Jeff Cheeger and Bruce Kleiner 2015
6. Patricia Alonso-Ruiz 2018, 2021
7. Gamal Mograby, Luke Rogers et al 2023

.. with not-back-on-the-envelop calculations ... or with a computer
assisted proof ... a part of a study of projective limit fractals, in
particular, affine p.c.f. bubble-diamond fractals

See also Lang and Plaut 2001.



Further examples of spaces to which our theory applies can be
constructed by taking products of nested fractals where the condition
wBE(dW − df ) is valid.

The n-fold product X n supports a heat kernel obtained by tensoring,
the walk dimension remains dW on the product and wBE(dW − df ) is
still true and the Hausdorff dimension is now ndf .

Theorem. If X is a nested fractal, then for every n ∈ N, the space
BV (X n) = B1,df/dW (X n) is dense in L1(X n, µ⊗n) and our wBE
Assumption is satisfied.



For nested fractals we do have κ = dW − df > 0.
A set has finite perimeter if and only if it has finite boundary,
P(E) ∼ #(∂E).

Theorem (research in progress)
f ∈ BV iff∇f is a “vector valued Radon measure”.
This is understood in the distributional sense (Hinz, Rogers,
Strichartz et al)

Corollary (research in progress)

1. on the Vicsek set, any BV function is R1-BV along each
geodesic path.

2. on the Sierpiński gasket, any BV function is discontinuous.
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Figure 2.2. A part of an infinite Sierpiński gasket.

0

3

5

6

-

6

Figure 2.3. An illustration to the computation of the spectrum on the infi-
nite Sierpiński gasket. The curved lines show the graph of the function R(·),
the vertical axis contains the spectrum of σ(−∆Γ0) and the horizontal axis
contains the spectrum σ(−∆).

the preimages of 5 and 3 under the inverse iterations of R. In this case formula (2.14) is
the same as the formulas for eigenprojections in [41]. The illustration to the computation
of the spectrum in Theorem 2.3 is shown in Figure 2.3, where the graph of the function
R is shown schematically and the location of eigenvalues is denoted by small crosses. The
spectrum σ(−∆) is shown on the horizontal axis and the set of eigenvalues Σ0 of −∆Γ0 is
shown on the vertical axis.
A different infinite Sierpiński gasket fractafold can be constructed using two copies of an

infinite Sierpiński gasket with a boundary point, and joining these copies at the boundary.
This fractal first was considered in [2], and has a natural axis of symmetry between left and
right copies. Therefore we can consider symmetric and anti-symmetric functions with respect
to these symmetries. It was proved in [41] that the spectrum of the Laplacian restricted to
the symmetric part is pure point with a complete set of eigenfunctions with compact support.
For the anti-symmetric part the compactly supported eigenfunctions are not complete, and
it was proved in [31] that the Laplacian on Γ0 has a singularly continuous component in
the spectrum, supported on JR, of spectral multiplicity one. As a corollary of these and our
results we have the following proposition.



For Sierpinski carpets,

α∗1 ≥ (df − dtH + 1)/dW , (2)

However the Barlow-Bass theory only yields wBE(κ) for
κ = dW − df , not for

κ = dW − df + dtH − 1.

We believe equality holds in (2) for α∗1 and post an open question
about the weak Bakry-Émery estimate at criticality.

Note that, if 1 < dS = 2 df
dW
< 2, proving wBE(κ) for κ > dW − df

would involve improving the Hölder continuity estimates for harmonic
functions in [BB89,BB99,Ba98], strongly supported by numerical
calculations in [L.Rogers et al].

Conjecture: for generalized Sierpinski carpets

α∗1 = (df − dtH + 1)/dW

and the condition wBE(κ) is valid for some κ > (dW − df )+.



Why do we care?
Many reasons, including

I Martin Barlow, Thierry Coulhon, Alexander Grigor’yan.
Manifolds and graphs with slow heat kernel decay.
Invent. Math. 144 (2001), no. 3, 609–649.

I Joint Spectra and related Topics in Complex Dynamics and
Representation Theory: BIRS Banff 23w5033 May 21–26, 2023

I Quantum gravity and other topics in physics
I Applied mathematics

Gamal Mograby, Kasso Okoudjou, Luke Rogers et. al
Maxim Derevyagin, Gerald Dunne, Gamal Mograby
Gabriel Claret, Michael Hinz, Anna Rozanova-Pierrat et. al
Simone Creo, Michael Hinz, Maria Rosaria Lancia
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In Memory of Professor Robert Strichartz

We will be dedicating the entire conference to Professor Strichartz.   A special session will be scheduled during the

conference for all to attend and re�ect on their thoughts and memories of Bob.  Bob is appreciated and recognized

for his organizing of the Fractals Conference Community in 2002. He will be profoundly missed by family, friends,
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8th Cornell Conference on Analysis, Probability,
and Mathematical Physics on Fractals:
June 2025

Everybody is invited !
End of the talk ... Thank you! :-)
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