
Anti-attracting Maps and Eigenforms on Fractals

Roberto Peirone

Università di Roma Tor Vergata, Roma, Italy

Ithaca, June 4-8th 2022

Roberto Peirone (Roma 2) Anti-attracting Maps and Eigenforms on Fractals7th Cornell Confer. on Fractals 1 / 28



General Idea

Fixed Point Theorems

THEOREM 1. (Brouwer fixed point Theorem) If f : A→ A is continuous
and A is a non-empty compact and convex subset of Rn, then f has a
fixed point.

When A is not compact, for example is open, simple examples show
that Theorem 1 does not hold. This happens if the boundary is

repelling

THEOREM 2 If A is an open convex bounded subset of Rn and
f : A→ A is continuous, then f has a fixed point provided ∂A is
repelling for f . Roughly speaking, this means that every point
of ∂A has a neighborhood U such that f maps U ∩ A towards the
interior of A.
Proof (Hint) f maps continuously some non-empty compact and
convex subset of A into itself.
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General Idea

Anti-attracting Maps
Let Z be an affine subset of Rn. Let Int(A) denote the interior of a
subset A of Z where the interior is meant to be with respect to the
euclidean topology on Z . For every x̃ , x ∈ Z , let

Extx̃ (x) =
{

x̃ + t(x − x̃) : t > 1
}
.

THEOREM 3. Let Z be an affine subset of Rn, let K be a non-empty
compact and convex subset of Z . Let θ be a continuous map from ∂K
to Int(K ) and let φ : K → Z be a continuous map such that
φ(x) /∈ Extθ(x)(x) for every x ∈ ∂K .
Then φ has a fixed point on K on K .
Proof. (Hint) If θ is constant, say θ(x) = x̄ , it suffices to take a fixed
point of the map p ◦ f from K into K . Here

p(x) =

{
x if x ∈ K
[x , x̄ ] ∩ ∂K otherwise

The general case is slightly more complicated.
Roberto Peirone (Roma 2) Anti-attracting Maps and Eigenforms on Fractals7th Cornell Confer. on Fractals 3 / 28



General Idea

Anti-attracting Maps

Let Z and K be as in Theorem 3, let φ be a
continuous map from Int(K ) into itself, and let
θ be a continuous map from ∂K to Int(K ).
We say that x̄ ∈ ∂K is anti-attracting for (φ, θ) if there exists a
neighborhood Ux̄ of x̄ in Z such that for every x ∈ Ux̄ ∩ Int(K )
and every x ′ ∈ Ux̄ ∩ ∂K we have φ(x) /∈ Extθ(x ′)(x). We say that
φ is θ-anti-attracting if every x̄ ∈ ∂K is anti-attracting for (φ, θ).

THEOREM 4 Let Z and K be as in Theorem 3. Let θ be a
continuous map from ∂K into Int(K ), and let φ be a
θ-anti-attracting map from Int(K ) into itself.

Then φ has a fixed point on Int(K )
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General Setting

Fractals

Here, we discuss analysis on finitely ramified self-similar fractals.
A self-similar fractal F is defined by a set of finitely many
contractive (i.e., having factor < 1) similarities ψ1, ..., ψk in Rν .
Then, F is the unique non-empty compact set F in Rν such that

F =
k⋃

i=1

ψi(F), (∗)

Finitely ramified means, more or less that the "copies" ψi(F) of the
fractal intersect only at finitely many points.
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General Setting
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Figure 3. The Vicsek Set
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Figure 4. The Carpet
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General Setting

Examples of self-similar fractals are the (Sierpinski) Gasket, the Vicsek
set, and the (Lindstrøm) Snowflake. An example of an infinitely
ramified fractal is the Sierpinski Carpet.

We also require that the fractal is connected, so excluding fractals as
the Cantor Set.
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General Setting

I will present now a more abstract and general setting. This setting
represents a subclass, widely considered, of the set of the P.C.F.
self-similar sets, a class of finitely ramified fractals introduced by J.
Kigami. (Similar to anchestor introduced by J. Kigami)
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General Setting

Our setting consists of:

A finite set Ψ =
{
ψ1, ..., ψk

}
of one-to-one maps defined on a finite set

V (0) =
{

P1, ...,PN
}

into some set, and put

V (1) =
⋃
ψ∈Ψ

ψ(V (0)) .

We call 1-cells the sets Vi := ψi(V (0)) for i = 1, ..., k , and put

V := {i = 1, ..., k}, U = {1, ...,N}.

In V we consider the graph G whose edges are {i1, i2} such that
Vi1 ∩ Vi2 6= ∅. We require: for each j = 1, ...,N

ψj(Pj) = Pj , Pj /∈ ψi(V (0)) ∀ i 6= j ∀ j = 1, ...,N, (a)

(V (1),G) is a connected graph. (b)
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Dirichlet Forms

Let
J :=

{
{j1, j2} : j1, j2 = 1, ...,N, j1 6= j2

}
.

D(V (0)) or D will denote the set of the functionals E (Dirichlet forms
on V (0)) from RV (0)

into R of the form

E(u) =
∑
{j1,j2}∈J

c{j1,j2}(E)
(
u(Pj1)− u(Pj2)

)2

where the coefficients c{j1,j2}(E) = E{j1,j2} are required to satisfy:

c{j1,j2}(E) = E{j1,j2} ≥ 0.
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Dirichlet Forms

By definition, E ∈ D̃ if E ∈ D and moreover E(u) = 0 if and only if
u is constant.

This amounts to the fact that every two points in U can be connected
by a path (j1, ..., jn) such that c{jh,jh+1}(E) > 0 for h = 1, ...,n − 1.

Note that every E ∈ D is uniquely determined by its coefficients.
In fact,

E{j1,j2} =
1
4

(
E
(
χ{Pj1

} − χ{Pj2}

)
− E

(
χ{Pj1}

+ χ{Pj2
}
))
.

Thus, E can be identified to a point in RJ , namely(
E{j1,j2} : {j1, j2} ∈ J

)
.
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Renormalization

2. Renormalization
For every u ∈ RV (0)

, every E ∈ D̃ and every r ∈W :=]0,+∞[V

(ri := r(i)), put
Λr (E)(u) = inf

{
S1;r (E)(v), v ∈ L(u)

}
,

where by definition,

S1;r (E)(v) :=
k∑

i=1
riE(v ◦ ψi),

L(u) :=
{

v ∈ RV (1)
: v = u on V (0)

}
.

It is well known that the infimum is attained at a unique function
v := H1,E ;r (u).
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Renormalization

When r ∈W , an element E of D̃ is said to be an r -eigenform with
eigenvalue ρ > 0 if

Λr (E) = ρE .

As this amounts to Λ r
ρ

(E) = E , we could also require ρ = 1. Note also
that it is well-known that if there exist two r -eigenforms on the same
fractal, then they have the same eigenvalue.
In other words, the r -eigenform can be not unique, but the eigenvalue
is unique.
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Renormalization

The r -eigenforms are important since they are in one-to-one
correspondence with the r -self-similar energies

on all of the fractal
satisfying some nice properties which I will not specify here.
Namely, the correspondence associates E to E ∈ D̃ where
for every v ∈ RK we define

E(v) = lim
n→+∞

1
ρn

k∑
i1,...in=1

ri1 · · · rinE
(
v ◦ ψi1 ◦ · · · ◦ ψin

)
.

The r -eigenforms, or more precisely the equivalence classes of

r -eigenforms where two elements E1 and E2 are equivalent if E2
is a positive multiple of E1, are also in one-to-one
correspondence with the self-similar diffusions and
with the harmonic structures on the fractal.
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Renormalization

Natural problems in this context are the Existence and the
Uniqueness of the r -eigenforms. Uniqueness will mean
uniqueness up to a multiplicative constant. In fact, a positive
multiple of an r -eigenform is an r -eigenform as well.

We give here some references to the problem of existence of an
r -eigenform on a fractal.
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Renormalization

[1] T. Lindstrøm, Brownian Motion on Nested Fractals. Mem. Amer.
Math. Soc. No. 420 (1990).

[2] C. Sabot, Existence and Uniqueness of Diffusions on Finitely
Ramified Self-Similar Fractals. Ann. Sci. École Norm. Sup. (4) 30 no.
5, 605-673 (1997).

[3] V. Metz, The short-cut test. Journal of Functional Analysis 220,
118-156 (2005).

[4] R. Peirone, Fixed points of anti-attracting maps and eigenforms on
fractals, Mathematische Nachrichten, 294 (8),1578-1594, (2021)

[5] R. Peirone, A P.C.F. self-similar set with no self-similar energy, J.
Fractal Geometry, 6, Issue 4, 2019, pp. 393-404

[6] R. Peirone. Existence of Self-similar Energies on Finitely Ramified
Fractals, Journal d’Analyse Mathematique, vol. 123, issue 1 (2014),
35-94.

Roberto Peirone (Roma 2) Anti-attracting Maps and Eigenforms on Fractals7th Cornell Confer. on Fractals 15 / 28



Renormalization

I now describe the results of the references.
T. Lindstrøm proved in [1] that there exists an 1-eigenform (that is, an
eigenform with all weights equal to 1,) on the nested fractals C. Sabot
in [2] proved a rather general criterion, V. Metz in [3] improved the
results in [2]. This talk is based on the results of [4], where a new proof
of the main result of [3] is given using Theorem 4. See [4] for more
details.
A natural question which was been a well-known open question was
whether an every P.C.F. self-similar set there exists an r -eigenform for
a suitable r ∈W . In [5] a counterexample is provided. On the other
hand, in [6], a weak form of the conjecture is proved. Namely, on every
fractal of the type considered here, there exists an r -eigenform but with
respect to a suitable set of maps defining the fractal, not to the given
set of maps {ψi : i = 1, ..., k}.
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Renormalization

The problem of existence of an r -eigenform is usually a
difficult problem.
The point is that the eigeform is required to be in D̃. In fact, In our
setting an r -eigenform in D always exists for every set of weights r .

Idea of proof: the set{
E ∈ D : Λr (E) ≥ cE , |E | = 1

}
is non-empty, compact and convex with a suitable definition of the
norm | |, so Λr

|Λr | has a fixed point.
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Renormalization

For E ∈ D let
|E | :=

∑
d∈J

Ed

Note that Λr is 1-homogeneous, that is Λr (aE) = aΛr (E) when a is
positive.
Consider the map Λ̂r defined as

Λ̂r (E) :=
Λr (E)∣∣Λr (E)

∣∣ .
Let DN =

{
E ∈ D : |E | = 1

}
, D̃N =

{
E ∈ D̃ : |E | = 1

}
.

Now, the existence of an r -eigenform amounts to the existence of a
fixed point of Λ̂ on D̃N.
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Renormalization

Anti-attracting forms on Fractals.
Recall that a form in D can be seen as an element of RJ . Recall J is
the set of different {j1, j2} in {1, ...,N}, namey

E can be identified to
(
E{j1,j2} : {j1, j2} ∈ J

)
.

So, we define specific sets in RJ which will play the roles of Z and K ,
Moreover, we will investigate the notion of an anti-attracting form with
respect to a map obtained normalizing Λr . Let us define

L̃(x) :=
∑
d∈J

xd ∀ x ∈ RJ ,

|x | :=
∑
d∈J

|xd | ∀ x ∈ RJ ,

Z :=
{

x ∈ RJ : L̃(x) = 1
}
,

DN =:
{

E ∈ D : |E | = 1
}

=
{

E ∈ Z : Ed ≥ 0 ∀d ∈ J
}
.
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Renormalization

So, Z is an affine set in RJ and DN is a non-empty compact and
convex subset of Z . We easily characterize Int(DN). In fact we have
Int(DN) = D

(1)
N where

D
(1)
N := {E ∈ DN : Ed > 0 ∀d ∈ J} ⊆ D̃.

It is known that if E ∈ D̃ satisfies Ed > 0 for every d ∈ J, so does
Λr (E). Thus Λ̂r maps continuously D

(1)
N into itself. However,

in general Λ̂r cannot be extended continuously on all of DN.
In fact, we could have Λr (E) = 0 for some E ∈ D \ D̃.
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Renormalization

We so need a nice decomposition of ∂DN. Let

D
(2)
N := DN ∩ D̃ \D(1)

N ,

D
(3)
N = {E ∈ DN \ D̃ : Λr (E) 6= 0},

D
(4)
N = {E ∈ DN \ D̃ : Λr (E) = 0},

where r ∈W . In fact, it can be proved that the formula Λr (E) = 0 is
independent of r ∈W , but this is not important for our considerations
since we fix a given r ∈W . We easily have

∂DN = D
(2)
N ∪D

(3)
N ∪D

(4)
N .

Cearly, Λ̂r maps continuously D
(1)
N ∪D

(2)
N ∪D

(3)
N into DN.

We say that E is a degenerate r -eigenform
if Λ̂(E) = ρE for some ρ > 0 but E ∈ D \ D̃.

When E ∈ D
(1)
N ∪D

(2)
N ∪D

(3)
N , then E is a (possibly degenerate)

r -eigenform if and only if it is a fixed point of Λ̂r .
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Renormalization

We try to apply Theorem 4 in this setting. Thus, we try to characterize
what E ∈ ∂DN are anti-attracting for (Λ̂r , θ) when θ is a continuous
map from ∂DN to D

(1)
N .

Lemma

Let r ∈W and let θ be a continuous map from ∂DN to D
(1)
N . Then

every Ē ∈ D
(4)
N is anti-attracting for (Λ̂r , θ).

Lemma

Let r ∈W and let θ be a continuous map from ∂DN to D
(1)
N . Then

every Ē ∈ D
(2)
N ∪D

(3)
N such that Λ̂r (Ē) 6= Ē is anti-attracting for (Λ̂r , θ).

Thus, the only (possibly) non anti-attracting forms are the degenerate
eigenforms in D

(3)
N

NOTE: if Λ̂r (Ē) = Ē for some E ∈ D
(2)
N ⊆ D̃, we clearly have existence

of an r -eigenform.
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Renormalization

Renormalization along a degenerate eigenform
If E ∈ D let KerE := E−1(0) Recall that if Ē ∈ D \ D̃, Ē 6= 0, then
Ker(Ē) strictly contains the set of the constant functions.
Moreover, we denote by DE the set {E ′ ∈ D : Ker(E ′) = Ker(E)}. The
sets of the form DE , E ∈ D will be called P-parts. Note that DE is the
unique P-part containing E .
Clearly, we have only finitely many P-parts.
The term "P-part " is due to Metz. Sabot used the equivalent notion of
G-relation.
The following notion is due to Sabot and its aim is to approximate Λr
near Ē ∈ D \ D̃ by minimizing along functions in Ker(Ē). Namely, we
define Λr ,Ē (E) : Ker(Ē)→ R as

Λr ,Ē (E)(u) = inf
{

S1,r
(
E)(v) : v ∈ L(u), v ◦ ψi ∈ Ker(Ē) ∀ i = 1, ..., k

}
∀u ∈ Ker(Ē).

Of course, Λr ,Ē (E) is independent of Ē in a given P-part.
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Renormalization

Note that trivially

Λr (E)(u) ≤ Λr ,Ē (E)(u).

Lemma (Sabot) Let r ∈W and let Ẽ ∈ D
(1)
N . If Ē ∈ D

(3)
N and

Λ̂r (Ē) = Ē , then for every α < 1 there exists a neighborhood U
of Ē such that for every E ∈ U ∩D

(1)
N and every u ∈ Ker(Ē)

one has

Λr (E)(u) ≥ αΛr ,Ē (E)(u).

In other words
Λr ,Ē (E)

Λr (E)
−→
E→Ē

1.
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Renormalization

We say that the degenerate r -eigenform
Ē ∈ D

(3)
N with eigenvalue ρ is Ẽ-repelling if

∃ ρ′ > ρ : Λr ,Ē (Ẽ)(u) ≥ ρ′Ẽ(u) ∀u ∈ Ker(Ē).

We also say that the degenerate r -eigenform is repelling if it is
Ẽ-repellng for some Ẽ ∈ D

(1)
N .
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Renormalization

Lemma Let r ∈W and let θ be a continuous map from ∂DN to D
(1)
N .

Suppose a degenerate r -eigenform Ē ∈ D
(3)
N is θ(Ē)-repelling. Then Ē

is anti-attracting for (Λ̂r , θ).

Theorem

Suppose that there exists a continuous map θ : ∂DN → D
(1)
N such that

every degenerate r -eigenform Ē ∈ D
(3)
N is θ(Ē)-repelling. Then there

exists an r-eigenform.
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Renormalization

We now want to prove that, in the hypothesis of previous theorem, we
can remove the continuity of θ. In other words, if every r -degenerate
eigenform Ē in D

(3)
N is repelling, that is, is repelling with respect to

some θ(Ē), we can choose such a function θ to be continuous.

Theorem

Suppose that every degenerate r -eigenform Ē ∈ D
(3)
N is repelling.

Then there exists a continuous map θ : ∂DN → D
(1)
N such that every

degenerate r -eigenform Ē ∈ D
(3)
N is θ(Ē)-repelling, thus there exists

an r-eigenform.

Proof. (Hint) For a given Ē ∈ D
(3)
N , there exists θ(Ē) ∈ D

(1)
N such that Ē

is θ(Ē)-repelling. Then, extend θ using Tietze’s Theorem.
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Renormalization

Consequence (Metz)
A P-part is non-trivial if is different from D̃ and {0}.
A P-part P is Λ-invariant if Λr (E) ∈ P for a given E ∈ P. It is easy to
verify that this definition is independent both of E and of r .
Now, enumerate the nontrivial Λ-invariant P-parts containing a
degenerate r -eigenform as P1, ...,Ps. For every i = 1, ..., s, let Ēi be a
degenerate r -eigenform with eigenvalue ρi . Let

γi = sup
E∈D̃

inf
{Λr ,Ēi

(E)(u)

E(u)
: u ∈ Ker(Ēi),u non-constant

}
.

Then if
max{ρi : i = 1, ..., s} < min{γi : i = 1, ..., s},

then there exists an r -eigenform. On the other hand, if

max{ρi : i = 1, ..., s} > min{γi : i = 1, ..., s},

then there exist no r -eigenforms.
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