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Abstract:
Using non-smooth, or fractal, models in scientific and industrial
applications is a very promising area of research, which may allow us
to find optimal solutions to many problems not solvable by smooth
methods. On the other hand, irregular or fractal objects and images
are ubiquitous around us, from the smallest quantum scales to the
structure of clusters of galaxies. Therefore, it is important in theory
and in many applications to consider boundary value problems
involving fractal domains. The talk will discuss the recent progress
and challenges in adopting classical boundary value problems to the
setting of non-smooth geometries. The potential applications include
the better design of absorption materials, sharp recognition of
non-smooth images, and faster algorithms for fluid dynamics
computations. The presentation will be based on recent and
in-progress joint work with Anna Rozanova-Pierrat, Frédéric
Magoulès, Adrien Dekkers, Gabriel Claret (CentraleSupélec), Michael
Hinz (Bielefeld), Luke Rogers (UConn), Maria Rosaria Lancia (Rome
Sapienza), Patrick Ciarlet (ENSTA Paris).
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1. Introduction and motivation

I *Strichartz: A fractafold, a space that is locally modeled on a
specified fractal, is the fractal equivalent of a manifold.

I A “fractafold” is to a fractal what
a manifold is to a Euclidean half-space.

This is a part of the broader program to develop probabilistic, spectral
and vector analysis on singular spaces by carefully building
approximations by graphs or manifolds.



What is the first well-known appearance of fractals is
science?

In a sense, the simplest possible fractal appears in the famous Zeno’s
paradoxes: Zeno of Elea (c. 495 – c. 430 BC) "Achilles and the
Tortoise"

1. Achilles runs to the tortoise’s starting point while the tortoise
walks forward.

2. Achilles advances to where the tortoise was at the end of Step 1
while the tortoise goes yet further.

3. Achilles advances to where the tortoise was at the end of Step 2
while the tortoise goes yet further.
Etc.

Apparently, Achilles never overtakes the tortoise, since however
many steps he completes, the tortoise remains ahead of him.



Dichotomy paradox: that which is in locomotion must arrive at the
half-way stage before it arrives at the goal. In a race, the quickest
runner can never overtake the slowest, since the pursuer must first
reach the point whence the pursued started, so that the slower must
always hold a lead. [Aristotle, Physics VI:9, 239b10, 239b15]

***

In 1821, Augustin-Louis Cauchy proved that, for −1 < x < 1,

a + ax + ax2 + ax3 + ... =
a

1− x
:= S(a, x)

This is a weakly-self-similar sum satisfying a re-normalization
“fixed-point” functional equation

S(a, x) = a + x · S(a, x)



Cantor, Sierpinski, Julia, Mandelbrot
I How Long Is the Coast of Britain? Statistical Self-Similarity and

Fractional Dimension (Mandelbrot 1967).

The coastline paradox: the measured length of a stretch of coastline
depends on the scale of measurement.

Fractal titanium oxide under inverse 10-ns laser deposition in air and
water. A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, Z. Zhai
Applied Physics A volume 123, Article number: 253 (2017)
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As first pointed out by Bardeen and Ginzburg in the early sixties1,2,
the amount of magnetic flux carried by vortices in super-
conducting materials depends on their distance from the sample
edge, and can be smaller than one flux quantum, f0 = h/2e (where
h is Planck’s constant and e is the electronic charge). In bulk
superconductors, this reduction of flux becomes negligible at sub-
micrometre distances from the edge, but in thin films the effect
may survive much farther into the material3,4. But the effect has
not been observed experimentally, and it is often assumed that
magnetic field enters type II superconductors in units of f0. Here
we measure the amount of flux introduced by individual vortices
in a superconducting film, finding that the flux always differs
substantially from f0. We have observed vortices that carry as
little as 0.001f0, as well as ‘negative vortices’, whose penetration
leads to the expulsion of magnetic field. We distinguish two
phenomena responsible for non-quantized flux penetration: the
finite-size effect1–4 and a nonlinear screening of the magnetic field
due to the presence of a surface barrier. The latter effect has not
been considered previously, but is likely to cause non-quantized
penetration in most cases.

The magnetic properties of a superconductor, including its
current-carrying capacity, are determined by the motion of flux
through that superconductor as a whole; this motion involves
propagation of flux not only through the bulk but also through
the superconductor’s edge. Because of the inevitable pinning in real
superconductors, vortices can initially penetrate only at a finite
(usually, mesoscopic) distance from the edge. This effectively creates
an edge layer that serves as a reservoir of vortices that are subse-
quently injected further into the bulk, and there is growing evidence
that such a layer significantly influences global superconducting
properties5,6. On the other hand, near-edge vortices are not exactly
the same as vortices in the bulk because the distribution of electric
currents around a vortex (that is, the vortex’s structure) has to
change owing to the presence of the edge1–4.

One of the most directly observable consequences of the influence
of an edge on a vortex is that its flux is no longer quantized and
becomes smaller than f0 (refs 1–4). This effect is particularly
important in the case of thin films, where the screening is strongly
suppressed and non-exponential3,4. Although this flux reduction
has been known theoretically for several decades, such vortices
(carrying a fraction of f0) have never been observed or inferred in
an experiment. This provided the original motivation for our work,
as we found a way to address the issue by making use of ballistic Hall
magnetometry7,8. This technique allows accurate magnetization
measurements on micrometre-sized superconductors, where the
edge effects can be dominant.

Figure 1 shows typical behaviour that we observed for the initial
stages of field penetration in relatively large (15-mm), thin-film
superconductors. Curve a shows magnetic flux penetrating inside a
sample in a sequence of steps, such that each step corresponds to a

vortex or a number of vortices jumping inside; such behaviour is in
agreement with general expectations. However, a more careful look
reveals that the step height is not quantized, and that some jumps
are smaller than f0. We postpone a discussion of this observation
and now refer to another (nominally similar) sample in Fig. 1.
Curve b (for this sample) reveals a completely different picture,
which we have observed for many other samples. Here, after the
initial region of the full Meissner effect, the flux enters the film
relatively smoothly and, only after several flux jumps, the behaviour
becomes qualitatively similar to the one shown in curve a. On the
smooth part of curve b, the flux jumps correspond to a minor
fraction of f0. Moreover, the first two jumps are negative, indicating
that the superconductor expels magnetic field when a vortex jumps
inside. The influence of the edge1–4 discussed above can decrease the
amplitude of flux jumps and is partly (see below) responsible for
non-quantized steps. However, the existence of negative flux jumps
is unexpected and seemingly makes no sense.

To understand the origin of the negative jumps as well as the
reason why similar samples exhibit such different behaviour, we
performed a number of experiments using various sample geo-
metries. The results are summarized in Fig. 2, where we try to
simplify the situation as much as possible by using relatively small
disks and by examining only the penetration of the first vortex. The
advantage of using such small samples is that bulk pinning becomes
negligible compared to interaction of vortices with the edge and, as a
result, the first vortex comes right to the disk’s centre8,9. Therefore,
we can study the penetration of an individual vortex at the same,
well defined, distance (R = D/2) from the edge. As seen from Fig. 2,
the amount of flux carried by vortices entering the disk depends on
the roughness of the edge of the disk. The disk shown in Fig. 2a, with
a smooth edge, exhibits a negative flux jump when the first vortex

letters to nature

NATURE | VOL 407 | 7 SEPTEMBER 2000 | www.nature.com 55

H (G)
2 4 86

20

10

0

H (G)
65.5

2

3

δ

0

a

b

0

Φ

Φ(φ
0
)

Φ

Figure 1 Penetration of perpendicular magnetic field in a thin superconducting film. The
curves show the amount of flux Φ, as a function of increasing field H, inside two
aluminium disks of diameter D < 15 mm and thickness h < 0.1 mm at T < 0.5 K. Due to
bulk pinning, which is rather weak8 but still present, entering vortices jump no farther
than a few micrometres from the edge (we observe hysteresis due to bulk pinning if
D . 4 mm). This makes measurements for the larger disks essentially equivalent to a
study of flux penetration in a pD-long strip of an identical macroscopic film. Initially, the
samples were cooled in zero field. Special care was taken to avoid ‘freezing-in’ any
vortices; the absence of such vortices was verified by observing a symmetric response for
the opposite field direction. The measurements were performed using ballistic Hall
magnetometry (Fig. 2). For convenience, we define Φ so that it has zero slope in the low-
field limit where M ~ H (such a notation ignores the amount of flux in the … 2 8 % l-layer for the
ideal Meissner state; taking the latter flux into account would only lead to an additional,
constant slope for Φ–H curves). The absolute scale along the Φ axis is determined with
an experimental accuracy of about 10%. Curve a is shifted for clarity. Inset, magnified
view of part of curve b, exhibiting negative flux jumps.
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Abstract – Within the Ginzburg-Landau formalism, we study the mixed state of a superconduct-
ing disk surrounded by a magnetic ring. The stray field of the magnet, concentrated at the rim of
the superconducting disk, favors ring-like arrangement of induced vortices, to the point that even
a single vortex state exhibits asymmetry. A novel route for the destruction of superconductivity
with increasing magnetization of the magnetic coating is found: first all vortices leave the sample,
and are replaced by a re-entered Meissner phase with a full depression of the order-parameter
at the sample edge; subsequently, superconductivity is then gradually suppressed from the edge
inwards, contrary to the well-known surface superconductivity. When exposed to an additional
homogeneous magnetic field, we find a field-polarity–dependent vortex structure in our sample
—for all vorticities, only giant- or multi-vortex states are found for given polarity of the
external field. In large samples, the number of vortex shells and number of flux quanta in each of
them can be controlled by the parameters of the magnetic coating.

Copyright c© EPLA, 2007

Introduction. – Over last decade, vortex matter in
mesoscopic superconductors has drawn the attention of a
wide scientific community. Non-trivial effects of quantum
confinement and novel phase transitions were found, e.g.,
in submicron superconducting (SC) disks. Both type
and order of the transitions between different SC states
and between the superconducting and the normal state
depended crucially on the disk radius and its thickness
[1–3]. Early measurements [1,4] confirmed the existence
of vortices in the mixed state of thin samples even for
type-I materials, and vortex entry and exit were described
theoretically in ref. [5]. However, it is the exact vortex
configuration that rose most questions, due to the strong
interplay of the inter-vortex interactions and the imposed
topological confinement. One can conclude by analogy
with classical particles confined by an external poten-
tial [6], that the structure of a finite number of vortices
should differ from a simple triangular arrangement
(i.e. Abrikosov lattice) and exhibit different metastable
states. Schweigert et al. [3] first addressed this issue,
and predicted the multi-vortex state (the collection of
single-quanta vortices on a ring) and the giant-vortex

(a)Also at: Department of Physics, University of Bath - Claverton
Down, Bath BA2 7AY, UK.
(b)E-mail: francois.peeters@ua.ac.be

state (where vortices coalesce into a single multiquanta
vortex) in SC disks. Very recently, experimental distinc-
tion between the latter two allotropic states for given
vorticity was made by Kanda et al. [7].
Besides by the sample shape, the vortex configurations

can also be influenced by inhomogeneous magnetic fields.
In this respect, mesoscopic superconductors with an out-
of-plane magnetized ferromagnet on top were studied
[8,9]. Significant enhancement of critical field was also
found, for applied field opposite to the polarity of the
magnet. The optimal enhancement of both critical field
and critical current was actually realized for in-plane
magnet on top of the SC sample [10,11], for out-of-
plane magnetic strip placed aside the superconductor [12],
as well as for SC wires covered by a soft magnetic
material [13]. The versatility of such studies was further
proven by using a superconducting ring with a magnet
inside as a phase-shifter for a qubit [14], or as a linear
magnetic flux amplifier [15].
Motivated by the above studies, we investigate here

another superconductor-ferromagnet hybrid structure —a
superconducting disk with a magnetic ring around. Such
a structure has not been considered before, and is actually
in many ways different from previous studies. For example,
magnetic field emerging from the magnetic ring will affect
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Novel vortex phenomena in a superconducting disk with magnetic coating

Fig. 2: The free energy of the states with different vorticity L as a function of the magnetization of the magnetic coating. Insets
show the Cooper-pair density contourplots of the corresponding states. (a-c) Superconducting phase and (d-f) |ψ|2-density
plots, illustrate simultaneous vortex exit and suppression of superconductivity at the rim of the superconducting disk for high
magnetization.

thickness d= 1.0ξ, laterally coated by a thin oxide layer
(l= 0.1ξ) and a magnetic ring of width Rout−Rin = 2.0ξ
(see fig. 1(a) for notation). The energy landscape is
obtained as a function of the magnetization of the ring,
i.e. the amplitude of the stray field illustrated in fig. 1(b).
Similar to the case of a superconducting disk in a homo-

geneous magnetic field [3], each curve in fig. 2 corre-
sponds to a separate vortex state, denoted by vorticity
L. However, detailed features appear to be very different
from the latter case.

Re-entrant Meissner state. The first fact to note is the
pronounced stability of the Meissner state compared to
the vortex states. Namely, since most of the stray field
of the magnet is actually concentrated at the rim of
the superconducting disk, it can relatively easily be
expelled from the sample. However, due to the penetrat-
ing magnetic field into the interior of the disk, vortices
eventually nucleate there. Insets in fig. 2 show the
contourplots of the Cooper-pair density for states with
vorticity L= 1–3. At a first sight, the found multi-vortex
states seem similar to the ones found in ref. [3], except
that vortices are untypically located closer to the edges
of the disk due to the higher magnetic field there.
The latter feature becomes even more obvious for

the L= 4 state, shown in figs. 2(a,d) for magnetization
M = 8.7Hc2. Interestingly enough, for further increased
magnetization of the coating, we did not find new vortex
states appearing; instead, superconductivity ceases to
exist at M = 17.2Hc2. Actually, it happens not only that
no new vortices enter the sample, but quite opposite —
they collectively leave the superconducting disk. As shown

in figs. 2(a-f), in a second-order transition, all four vortices
gradually exit, and are replaced by a complete ring-like
suppression of superconductivity. Strictly speaking, for
M > 10.4Hc2 there are no vortices left in the sample,
and we have the re-entrance of the L= 0 state in the
ground state. Its manifestation is different though, as no
order parameter survives at the edge of the disk, neither
do screening currents flow there. We are left with an
effectively smaller superconducting disk (Reff ≈ 2.2ξ) and
with Dirichlet boundary condition (ψ= 0). With further
increase of the magnetic field, superconductivity is gradu-
ally destroyed over the whole sample, with no new vortices
appearing. Similar absence of surface superconductivity
in cylindrical superconductors in homogeneous magnetic
field with modified boundary condition was discussed
earlier in ref. [17].

Asymmetric single-vortex state. Obviously, all above
novel phenomena are directly related to the specific
inhomogeneous profile of the magnetic field emerging from
the magnetic ring. To enhance this effect, in what follows
we enlarge the superconducting disk (R= 8.0ξ), and make
the magnetic coating thinner (width 1.0ξ). In such a
scenario, stray magnetic field of the magnet becomes even
more pronounced at the edge of the superconductor, and
sharply drops to zero towards the interior of the disk.
The results are shown in fig. 3. As a consequence of

a larger superconducting sample, more different vortex
states are stabilized compared to fig. 2; more vortices
may enter the sample, and critical magnetization for the
superconducting/normal transition is increased to a higher
value of Mc = 122.7Hc2 (for clarity, figure shows only the
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M. V. Milošević et al.

Fig. 1: (a) The superconducting disk with magnetic coating, in external magnetic field (parameters indicated, shown directions
for �M and �H will be referred to as positive throughout the article). (b) The magnetic field profile inside a magnetic ring with
Rin = 400 nm, Rout = 600 nm and d= 100 nm.

most the outer regions of the superconducting disk (this
is the reversed case from, e.g., refs. [8,9,14,15]), and
thus strongly influence surface superconductivity and
Bean-Livingston barrier.

Theoretical formalism. – In this work, we analyze
the interplay of the magnetic fields in a thin super-
conducting disk inside a magnetic ring with perpendi-
cular magnetization (see fig. 1), exposed to a background
homogeneous field. The stray field inside a thin magnetic
ring (its z-component) can be calculated analytically as

h/M =

∞∑
n=0

P2n(0)P2n+1(ζ)
(
r2n+1out − r2n+1in

)
, (1)

in polar (ρ, θ, z) coordinates, where ζ = d
/√

d2+4ρ2,

rin,out =
√
d2/4+ ρ2

/
Rin,out, and Pi(x) are the Legendre

polynomials (see fig. 1 for notation of parameters and
ref. [16] for the general expression). In our sample,
magnetic ring and superconductor are electronically
decoupled by a thin oxide layer. We first investigate the
influence of the stray field of the magnet on the super-
conducting state of the disk; later, critical parameters
and vortex matter are discussed in the presence of the
applied field.
In our theoretical treatment of this system, we use the

non-linear Ginzburg-Landau (GL) formalism, combined
with Neumann boundary conditions (zero current perpe-
trating the boundary). To investigate the superconduct-
ing state of a sample with volume V , we minimize, with
respect to the order parameter ψ, the GL free energy

F =
∫
dv

V

(
|(−i�∇− �AH − �Am)ψ|2− |ψ|2+ 1

2
|ψ|4
)
,

(2)

expressed in units of the critical field energy density,
F0 =H2c /4π. Note that in eq. (2) all distances are scaled

to ξ, the order parameter to ψ0 =
√−α/β (α, β being

the GL coefficients), and the magnetic vector potential
�A is given in units of A0 =Φ0

/
2πξ ( �A= �AH + �Am, i.e. it

sums the vector potential of the homogeneous field and
the magnetic ring, respectively). Note that eq. (2) assumes
the contribution of the screening currents to the magnetic
field to be negligible. In other words, we consider a type-II
superconductor of finite size, such that the London pene-
tration length is much larger than the sample. This is
justified for thin mesoscopic samples, which mostly exhibit
effective strong type-II behavior, and for extreme type-II
materials such as NbSe2 and NbSe3 (under pressure).
Minimization of eq. (2) leads to equations for the order

parameter and superconducting current

(−i�∇− �A)2ψ= (1− |ψ|2)ψ, (3)

�j =�(ψ∗�∇ψ)− |ψ|2 �A, (4)

which we solve following a numerical approach proposed
by Schweigert et al. (see ref. [2]) on a uniform Cartesian
grid with typically 10 points/ξ in each direction. We then
start from randomly generated initial distribution of ψ,
increase/decrease the magnetization of the magnet or
change the value of the applied external field, and let
eq. (3) relax to its steady-state solution. In addition, we
always recalculate the vortex structure starting from the
pure Meissner state1(ψ= 1) or the normal state (ψ≈ 0)
as initial condition. All stable states are then collected
and their energies are compared to find the ground state
configuration.

Superconducting disk in the stray field of
the coating. – Figure 2 shows the free energy of the
superconducting state for a disk of radius R= 4.0ξ and

1Note that, strictly speaking, Meissner screening of the applied
magnetic field is not included in the present theoretical approach.
Nevertheless, we refer to the analogous vortex-free superconducting
state as a Meissner phase in the rest of the article.
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Fig. 1: (a) The superconducting disk with magnetic coating, in external magnetic field (parameters indicated, shown directions
for �M and �H will be referred to as positive throughout the article). (b) The magnetic field profile inside a magnetic ring with
Rin = 400 nm, Rout = 600 nm and d= 100 nm.

most the outer regions of the superconducting disk (this
is the reversed case from, e.g., refs. [8,9,14,15]), and
thus strongly influence surface superconductivity and
Bean-Livingston barrier.

Theoretical formalism. – In this work, we analyze
the interplay of the magnetic fields in a thin super-
conducting disk inside a magnetic ring with perpendi-
cular magnetization (see fig. 1), exposed to a background
homogeneous field. The stray field inside a thin magnetic
ring (its z-component) can be calculated analytically as

h/M =

∞∑
n=0

P2n(0)P2n+1(ζ)
(
r2n+1out − r2n+1in

)
, (1)

in polar (ρ, θ, z) coordinates, where ζ = d
/√

d2+4ρ2,

rin,out =
√
d2/4+ ρ2

/
Rin,out, and Pi(x) are the Legendre

polynomials (see fig. 1 for notation of parameters and
ref. [16] for the general expression). In our sample,
magnetic ring and superconductor are electronically
decoupled by a thin oxide layer. We first investigate the
influence of the stray field of the magnet on the super-
conducting state of the disk; later, critical parameters
and vortex matter are discussed in the presence of the
applied field.
In our theoretical treatment of this system, we use the

non-linear Ginzburg-Landau (GL) formalism, combined
with Neumann boundary conditions (zero current perpe-
trating the boundary). To investigate the superconduct-
ing state of a sample with volume V , we minimize, with
respect to the order parameter ψ, the GL free energy

F =
∫
dv

V

(
|(−i�∇− �AH − �Am)ψ|2− |ψ|2+ 1

2
|ψ|4
)
,

(2)

expressed in units of the critical field energy density,
F0 =H2c /4π. Note that in eq. (2) all distances are scaled

to ξ, the order parameter to ψ0 =
√−α/β (α, β being

the GL coefficients), and the magnetic vector potential
�A is given in units of A0 =Φ0

/
2πξ ( �A= �AH + �Am, i.e. it

sums the vector potential of the homogeneous field and
the magnetic ring, respectively). Note that eq. (2) assumes
the contribution of the screening currents to the magnetic
field to be negligible. In other words, we consider a type-II
superconductor of finite size, such that the London pene-
tration length is much larger than the sample. This is
justified for thin mesoscopic samples, which mostly exhibit
effective strong type-II behavior, and for extreme type-II
materials such as NbSe2 and NbSe3 (under pressure).
Minimization of eq. (2) leads to equations for the order

parameter and superconducting current

(−i�∇− �A)2ψ= (1− |ψ|2)ψ, (3)

�j =�(ψ∗�∇ψ)− |ψ|2 �A, (4)

which we solve following a numerical approach proposed
by Schweigert et al. (see ref. [2]) on a uniform Cartesian
grid with typically 10 points/ξ in each direction. We then
start from randomly generated initial distribution of ψ,
increase/decrease the magnetization of the magnet or
change the value of the applied external field, and let
eq. (3) relax to its steady-state solution. In addition, we
always recalculate the vortex structure starting from the
pure Meissner state1(ψ= 1) or the normal state (ψ≈ 0)
as initial condition. All stable states are then collected
and their energies are compared to find the ground state
configuration.

Superconducting disk in the stray field of
the coating. – Figure 2 shows the free energy of the
superconducting state for a disk of radius R= 4.0ξ and

1Note that, strictly speaking, Meissner screening of the applied
magnetic field is not included in the present theoretical approach.
Nevertheless, we refer to the analogous vortex-free superconducting
state as a Meissner phase in the rest of the article.
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Fig. 3: Free energy diagram for a large superconducting disk with thin magnetic coating. Insets show the |ψ|2-density plots of
distinct vortex states.

range below M = 65Hc2). The first essential difference
compared to the case of a smaller sample is the single-
vortex (L= 1) state. The Cooper-pair density of this state
is shown as inset (a) of fig. 3, which clearly illustrates
the asymmetric placement of the vortex with respect
to the sample edge. The origin of this asymmetry is
simply the energy minimization, following the competition
between the cylindrical confinement and the magnetic
field localized away from the center of the disk. Note
that such an asymmetric solution to the Ginzburg-Landau
equations is enabled by the non-linear term in eq. (3),
and is crucially different from the linear case which also
relates to semiconductor quantum nanostructures [18].
Therefore, this makes the broken-symmetry state likely
unique.
The remaining insets in fig. 3 depict two more distinct

vortex states found in the larger sample. Namely, with
increasing magnetization of the coating, new vortices
are added to the multi-vortex shell close to the disk edge
—up to L= 12, when one vortex enters the central part
of the disk (as shown in inset (b)). However, this tendency
does not continue for higher magnetization, as additional
vortices are placed at the outer shell up to L= 14. For
M > 70.2Hc2, the vortex shell starts to leave the disk in
the same fashion as in figs. 2(a-f), but with one difference
—the central vortex remains in the sample (see inset(c)),
until the very transition to the normal state.

Field-polarity-dependent vortex structure. – In
the remainder of the article, we will consider the influence
of the magnetic coating on the properties of the sample
in an applied homogeneous magnetic field. We fix the
magnetization of the coating toM = 4.0Hc2 (not sufficient
for vortex nucleation), and sweep up/down the applied
field H. The outcome is shown in fig. 4(a), for the same
parameters of the sample as in fig. 2. Figure 4(b) shows the
same diagram but for demagnetized coating, i.e. M = 0,
for comparison.
The first striking effect of the coating is the very

pronounced asymmetry of fig. 4(a) with respect to the
polarity of the applied field. For �H ‖ − �M the upper
critical field is ∼ 60% lower than in the case of M = 0,
and maximal vorticity is Lmax = 5 (in (b), Lmax = 8).
On the other hand, for �H ‖ �M the critical field becomes
∼ 70% higher than in the case of M = 0, with Lmax =
13. Similar enhancement of the critical field due to the
compensation of the applied and the magnet’s stray field
has been found experimentally in ref. [9]. Note that there
the magnetic dot was placed on top and approximately in
the center of the superconducting disk, so that the stray
field had the opposite polarity to the one in our case, and
was maximal in the central part of the sample (i.e. under
the dot). Consequently, they observed enhancement of the
critical field for �H ‖ − �M , and vortex matter in the sample
showed different behavior. As we mentioned earlier, vortex
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Novel vortex phenomena in a superconducting disk with magnetic coating

Fig. 4: (a) Free energy of a superconducting disk with magnetic coating as a function of applied homogeneous magnetic field.
Insets show the Cooper-pair density plots for indicated states. (b) Same as (a), but for demagnetized coating. In (b), dashed
lines denote multi-vortex and solid lines giant-vortex configurations.

Fig. 5: The |ψ|2-density plots illustrating the arrangement of vortex shells in a large superconducting disk for L= 53 and
L= 60, with magnetic coating with (a,c) negative (M =−8Hc2), or (b,d) positive (M = 8Hc2) magnetization.

states in SC disks have two possible manifestations —a
giant- and a multi-vortex. Figure 4(b) shows the stability
of each of them for different vorticities (giant-/multi-
vortex, solid/dashed line). In the case of magnetic dot

on top, and �H ‖ �M , vortices are attracted by the magnet
and compressed under the dot, which favors giant-vortex
state, but does not necessarily impose it. However, in
our sample, in the corresponding case (now �H ‖ − �M),
favorable position of vortices is at the rim of the disk,
where total magnetic field is maximal. As a consequence,
we find only multi-vortex states on the right side of the
diagram in fig. 4(a). The negative applied field is however
compensated by the stray field; total field is maximal in
the center of the disk, and changes sign towards the disk
edge. This strongly enforces the confinement, leading to
giant-vortex formation for all vorticities. Note that due
to the total magnetic field which changes its polarity
across the sample, one may expect the appearance of the

vortex-antivortex configurations [8]. However, we did not
observe such states in the considered range of parameters,
mainly due to the thin magnetic coating. This causes a
very pronounced stray magnetic field over a very narrow
area close to the edge of the superconductor, insufficiently
wide for the stabilization of antivortices. Additionally, the
finite value of the stray magnetic field at the edge of the
sample induces significant local supercurrents, which lower
the Bean-Livingston barrier for expulsion of antivortices.

Manipulation of vortex shells and magic
numbers. – The competition between the Abrikosov
lattice and the imposed symmetry of the confinement
in large superconducting disks with many captured
vortices [19,20] has been of general interest in the last
decade. Namely, similar phenomena can also be found in
confined clusters of classical particles, such as electrons
on liquid He, artificial atoms, dust particles in plasmas,
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2. Wave absorption: numerical shape optimization

I F. Magoulès, T.P. Kieu Nguyen, P. Omnes, A. Rozanova-Pierrat,
Optimal absorption of acoustic waves by a boundary.
SIAM J. Control Optimization 59 (2021)
+ more numerical results

I C. Bardos, D. Grebenkov, A. Rozanova-Pierrat,
Short-time heat diffusion in compact domains with discontinuous
transmission boundary conditions.
Math. Mod. Meth. Appl. Sci. 26 (2016)

I A. Rozanova-Pierrat, D. S. Grebenkov, and B. Sapoval,
Faster diffusion across an irregular boundary.
Phys. Rev. Lett. 108 (2012)
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Fig. 1. An illustration for the Open Set Condition in the case of the square Koch curve, also called

the Minkowski fractal. The thick dotted line outlines the set O, which is called the 0-cell. The thin

dotted lines outlines the open sets in Φ1(O), which are called 1-cells. The bottom picture illustrats
the stronger form of the Open Set Condition used in Theorem 5.1: the thin solid lines outline the

open sets O′ and Φ1(O′).

Note that, by the standard decompositions into different scales, it is essentially

enough to consider the case when all contraction factors di,m are equal, that is

di,m = d for all i and m. To verify the Harnack chain condition, assume that

x, y ∈ Ωm such that distance to the boundary of each x and y is comparable to

δ1 ∼ dm1 and |x− y| = δ2 ∼ dm2 , where m ≥ m1 ≥ m2.

We proceed by considering different cases.

To begin with, assume that y is in a 0-cell but not in any 1-cell. In this case

we can apply the following strategy: connect x to the outer boundary of its 1-cell

by the Harnack chains of balls lying in this 1-cell, and connect this Harnack chain



3. Wave absorption: theoretical shape optimization
I Anna Rozanova-Pierrat, "Generalization of Rellich–Kondrachov

Theorem and Trace Compactness for Fractal Boundaries."
Volume ICIAM 2019 Proceedings. Fractals in Engineering:
Theoretical aspects and Numerical approximations. Springer
International Publishing, 2021.

I A. Dekkers, A. Rozanova-Pierrat, Dirichlet boundary valued
problems for linear and nonlinear wave equations on arbitrary
and fractal domains, J. Math. Anal. Appl. 512 (2022)

I A. Dekkers, A. Rozanova-Pierrat, A. Teplyaev, Mixed boundary
valued problems for linear and nonlinear wave equations in
domains with fractal boundaries, Calc. Var. PDE 61 (2022)

I M. Hinz, A. Rozanova-Pierrat, A. Teplyaev Non-Lipschitz uniform
domain shape optimization in linear acoustics SIAM J. Control
Optim. 59 (2021)

I M. Hinz, A. Rozanova-Pierrat, A. Teplyaev Boundary value
problems on non-Lipschitz uniform domains: Stability,
compactness and the existence of optimal shapes Asymptotic
Analysis (2023)



4. Equations used in architecture

I M. Hinz, F. Magoulès, A. Rozanova-Pierrat, M. Rynkovskaya, A.
Teplyaev, On the existence of optimal shapes in architecture.
Applied Mathematical Modelling 94 (2021)

Given a domain Ω ⊂ RN and a vector field v ∈ W 1,2(Ω)N we denote
the symmetric part of its gradient by

e(v) =
1
2
(
∇v + (∇v)t) .

Let A ∈ L∞(Ω,Ms
N(α, β)) and write σ(v) = Ae(v), v ∈ W 1,2(Ω)N .

We are interested in solutions u ∈ W 1,2(Ω)N of BVP:
−div σ(u) = f in Ω,

u = 0 on ΓDir,

σ(u) · n = g on ΓNeu.

(1)



5. Wentzell Boundary conditions

I A. Wentzell. On boundary conditions for multi-dimensional
diffusion processes. Theor. Probability Appl. (1959)

E(u) =

∫
Ω

‖∇u‖2dx + E∂Ω(u)



5.1 Theoretical study

I M. R. Lancia, P. Vernole,
Venttsel’ problems in fractal domains
J. Evol. Equ. 14 (2014), no. 3, 681–712.

...

I M. Hinz, M. R. Lancia, A. Teplyaev, P. Vernole, Fractal snowflake
domain diffusion with boundary and interior drifts, J. Math. Anal.
Appl. 457 (2018)

E(u) =

∫
Ω

‖∇u‖2dx + E∂Ω(u)



5.2 Discrete approximations

I M. Gabbard, C. Lima, G. Mograby, L. G. Rogers, A. Teplyaev,
Discretization of the Koch Snowflake Domain with Boundary
and Interior Energies, SEMA SIMAI Springer Series ICIAM2019
Fractals in engineering: Theoretical aspects and Numerical
approximations (2021)

E(u) =

∫
Ω

‖∇u‖2dx + E∂Ω(u)
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Figure 1. Mesh construction through scaled equilateral triangles.

where cn(p1, p2) is the conductance between points p1, p2. Unless stated otherwise we take

(3.2) cn(p1, p2) =





1 if p1 and p2 are connected by an interior edge

4n if p1 and p2 are connected by an outer boundary edge

0 if p1 and p2 are not connected by an edge.

We introduce a measure on the vertices Vn:

mn(p) =

{
1

9n
if p is an interior vertex

1
4n

if p is an outer boundary vertex.
(3.3)

The sequence of graph energies {E n(u)}n≥1 serves as an approximation of E (u) as justified in the following
proposition.

Theorem 3.1. Let u be a core function as described in Corollary 2.4. Then E (u) = limn→∞ E n(u).

Remark 3.2. E n(u) is understood as the graph energy of the restriction of u on Vn.
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Figure 2. Algorithm to generate the vertices of the graph Γn

After the construction of Γn we generate the corrsponding discrete Laplacian Ln as well as the Dirichlet
Laplacian. To generate the discrete Laplacian Ln we use KD Trees to determine efficiently which vertices’s are
boundary points and which are interior. We then create a weighted adjacency matrix with this information
where the weights are defined as in (3.2). From the constructed discrete Laplacian Ln we are able to generate
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Figure 3. Eigenvectors of Ln (left) compared with Dirichlet eigenvectors (right). (a) 1st eigen-
vector of Ln, eigenvalue 0. (b) 1st Dirichlet eigenvector, eigenvalue 118.8. (c) 2nd eigenvector
of Ln, eigenvalue 15.1. (d) 2nd Dirichlet eigenvector, eigenvalue 294.5. (e) 4th eigenvector of
Ln, eigenvalue 48.1. (f) 4th Dirichlet eigenvector, eigenvalue 499.8.
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Figure 4. Eigenvector of Ln (left) compared with Dirichlet eigenvectors (right). (a) 34th
eigenvector of Ln, eigenvalue 1098.6. (b) 13th Dirichlet eigenvector, eigenvalue 1084.6. (Level
4 graph approximation)

to the 13th Dirichlet eigenvector but also correspond to the eigenvalue 1098.6, which is very close to the 13th
Dirichlet eigenvalue (1084.6).

In general we observe that the Dirichlet eigenvectors exhibit more complex pattern than the their cor-
responding eigenvectors of Ln. Note that from a physics point of view, this is expected as the Dirichlet
eigenvectors correspond in our computations to a higher eigenvalues (energy) than their corresponding eigen-
vectors of Ln. Moreover, eigenvectors correspond to higher eigenvalues show increasing oscillatory behavior
which limits the graphical representation. For a better view of such eigenvectors, in particular regarding
their symmetries, we display in Figure 5 contour plots for a selection of eigenvectors of Ln. The blue regions
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Figure 5. Contour Plots of the Eigenvectors of Ln corresponding to eigenvalues λ: (a) 4th
eigenvector, λ = 48.1. (b) 5th eigenvector, λ = 48.1. (c) 6th eigenvector, λ = 85.1. (d) 8th
eigenvector λ = 125.4. (e) 1153rd eigenvector λ = 49965.7. (f) 1157th eigenvector λ = 50156.6.
(g) 1161st eigenvector, λ = 50188.8 and (h) 1162nd eigenvector, λ = 50188.83. Blue regions
indicate the values of an eigenvector in (−ε, ε), red regions in (ε,∞) and green regions in
(−∞,−ε), where ε = 0.01. (Level 4 graph approximation)
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Figure 6. (Upper) Eigenvalue counting functions of Dirichlet Laplacian (orange) and Ln
(blue). (Lower) Log-Log plot of the eigenvalue counting functions of Dirichlet Laplacian (or-
ange) and Ln (blue) (Level 4 graph approximation).
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Figure 7. (a) The 5, 028th eigenvector of Ln, λ = 118038.02. (b) The last Dirichlet eigenvec-
tor, λ = 118039.37. The oval-shaped graph is due to a high oscillation of both eigenvectors

bouncing ball modes and the existence of such modes is known mostly for a class of convex domains. For
details see [NG13] where also an example is provided, for which the high-frequency localized modes exist in
a non-convex domain (an elliptical annulus).

Our numerical observations show that taking the boundary energy into account while defining the discrete
Laplacian Ln induces eigenvectors corresponding to eigenvalues in the higher part of the spectrum that
demonstrate features of whispering gallery type modes. The geometrical information of the boundary is
encoded in Ln via the edge weights (conductance) and the vertices measure. Hence we are confronted with
the question whether it is possible to predict such modes by directly studying the Laplacian Ln. We will give
a partial answer in the next section by using ideas of Filoche and Mayboroda introduced in [FM].
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Figure 8. The last Ln eigenvector, λ = 524999.69. The graph splits into two parts, above
and below the Koch snowflake domain due to a high oscillation (Level 4 graph approximation).

5. Landscape Mapping: A Filoche-Mayboroda Argument

Wave localization in general is a puzzling phenomena as we mentioned last section, in particular the
question about the mechanisms that enable systems of complicated geometries to confine vibration modes
in some subregions of their domain even in the absence of clearly identifiable physical potentials. For the
general study of the localizations in fractal domain, see [SGM91] and related works.
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Figure 9. Ln eigenvectors localization with eigenvalues λ: (a) 5030th eigenvector, λ =
118048.66. (b) 5031th eigenvector, λ = 119678.65. (c) 5032th eigenvector, λ = 119678.65.
(d) 5033th eigenvector, λ = 121460.72. (e) 5100th eigenvector, λ = 185367.41. (f) 5200th
eigenvector, λ = 291364.38. (g) 5300th eigenvector, λ = 392584.97. (h) 5557th eigenvector,
λ = 524999.69. Blue regions indicate the values of an eigenvector in (−ε, ε), red regions in
(ε,∞) and green regions in (−∞,−ε), where ε = 0.01 (Level 4 graph approximation).
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Computations on the Koch Snowflake
Carlos D. Lima, Malcolm H. Gabbard, Gamal Mograby, Luke Rogers, Alexander Teplyaev

University of Connecticut 2018

Abstract
A Laplacian is applied to graph approximations
of the Koch Snowflake. Numerical approxima-
tions indicate a localization of the Laplacian
eigenfunctions at high energies.

Constructing the Snowflake

The Koch Curve K is approximated by a se-
quence of finite graphs, Kn [4]:

(a) K1 (b) K2

Figure 1: First and Second Level Approximations

TheKoch Snowflake, denoted Ω̄, is given by tak-
ing a union of three copies the Koch Curve K.

Energies on Ω̄

We consider a graph Laplacian L generated by the
following Dirichlet energy form:

En(f ) =
∑

p1,p2εVn

cn(p1, p2)(f (p1) − f (p2))2

where cn for two points p1, p2 on Ω̄ is,

cn(p1, p2) =





1 if p1,p2 share an interior edge
4n if p1,p2 share an outer boundary edge
0 if p1,p2 not connected by an edge.

This Laplacian form is defined w.r.t. the measure,

mn(p) =
{

1
9n if p is an interior vertex
1
4n if p is an outer boundary vertex

Eigenfunctions of L on Ω̄

Results from [3] were reproduced by imposing
Dirichlet B.C.:

0
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0.04

Figure 2: First (left) and Thirteenth (right) eigenvectors with
Dirichlet B.C.

The eigenvalues and eigenvectors of L change dras-
tically without Dirichelt B.C.:
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(d) Eigenvector 579
Figure 3: Contour plots of eigenvectors without Dirichlet B.C.

Localization of Energy

Motivated through experiments by Sapoval[1] where
they showed focused localization for a similar fractal,
the question was posed as to whether there existed
localization for eigenfunctions of L. Approximations
indeed indicate a form of localization on Ω̄, unlike
the results from [3] with Dirichlet B.C.

Figure 4: First sign of energy localization to the boundary of Ω̄
(left) and a continued “zeroing out" of the inner region(middle
and right) at higher energies.

Features of Localization

The counting function (a) gives a characterizing fea-
ture, a kind of inflection point, indicating a localiza-
tion of energy to the boundary of Ω̄.

(a) Counting Function of
eigenvectors.

���������
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(b) Eigenvector 5117
Figure 5: Localization of Eigenvectors on Ω̄

The “zeroing out” of the inner region may be due
to the high-frequency oscillations happening on the
boundary of Ω̄.

Figure 6: 2D plot of boundary for eigenvector 5550

The localization on ∂Ω is qualitatively similar
to high-frequency localization seen in whispering
gallery modes. A landscape function, in the style
of Filoche and Mayboroda [2], is generated and cor-
rectly predicts where eigenfunctions localize, seen in
Figure 7.

Figure 7: Landscape Function

Future Work

A more robust characterization of this high-
frequency localization is needed, and more mathe-
matically rigorous formulations are under way.
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Filoche and Mayboroda [FM, FM12] introduced a general theory which demonstrate that both Anderson
(disordered systems) and weak localizations (irregular geometries) originate from the same universal mecha-
nism. The theory gives rise to what they call a landscape Mapping, which we explain briefly with an example
following [FM]. They consider a vibrating system described by the wave equation associated to a suitable
elliptic differential operator L on an open bounded set Ω ⊂ Rn and for the sake of brevity they impose
Dirichlet boundary conditions. By investigating the eigenvalue problem for L,

Lφ(x) = λφ(x), x ∈ Ω, u|∂Ω = 0,

they demonstrate that eigenfunctions are controlled by the landscape mapping defined for x ∈ Ω,

(5.1) u(x) :=

∫

Ω

|G(x, y)|dy,
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Figure 10. The high frequency landscape vector attains just the following two values the
boundary vertices 527360 and 524288. It is constant on the interior vertices with the value
157464. (Level 4 graph approximation)

where G(x, y) is the Green’s function associated to L with Dirichlet boundary conditions. For a normalized
eigenfunction φ with respect to the uniform norm, i.e. supx∈Ω |φ(x)| = 1, corresponding to the eigenvalue λ,
they prove the inequality,

(5.2) |φ(x)| ≤ λ

∫

Ω

|G(x, y)|dy = λ u(x).

Subsequently they show that a graphical representation of the landscape mapping u(x) reveals usually a
complex partition of the domain into subregions and thereby helping to predict possible locations of localized
eigenfunctions. The idea is to track the low values of the landscape mapping u(x) and by doing so they



6. New Frontiers: Layer potentials

u(x) =

∫
S
ρ(y)

∂

∂ν
P(x, y)dσ(y)

v(x) = G ∗ f =

∫
Rn

g(x, y)dµ(y)



6.1 Riemann-Hilbert and Poincare variational
problems

Find a function in C, unanlytic outside of a curve, with
prescribed values and jumps on the curve.
Research in progress: Anna Rozanova-Pierrat, Gabriel Claret
(CentraleSupélec), Michael Hinz (Bielefeld).

Calssical applications:
I Integrable models, inverse scattering or inverse spectral problem
I the inverse monodromy problem for Painlevé equations
I Orthogonal polynomials, Random matrices
I Combinatorial probability
I Algebraic geometry, Donaldson–Thomas theory



6.2 Hilbert transform

H(u)(t) =
1
π

p.v .
∫
R

u(τ )

(t − τ )
dτ

Research in progress: Anna Rozanova-Pierrat, Gabriel Claret
(CentraleSupélec), Michael Hinz (Bielefeld).

Closely connected to the Riemann-Hilbert and Poincare variational
problems and is extensively used in analysis and in sygnal
processing.



7. New Frontiers: Maxwell and other vector equations
We develop new mathematical tools in the vector case in order to
study and solve Maxwell’s equations in non-Lipschitz, possibly fractal
domains. To that extent, we would like to show here one use of those
tools with the time-harmonic Maxwell problem completed with a
homogeneous Dirichlet boundary condition, which becomes with our
notations: {

curl(µ−1curl E)− ω2εE = f on Ω
TrT (E) = 0 on ∂Ω

where f ∈ L2(Ω) and we look for E ∈ H(curl,Ω).
This problem is equivalent to the following variational formulation:
Find E ∈ H0(curl,Ω) such that ∀F ∈ H0(curl,Ω):

(µ−1curl E, curl F)− ω2(εE, F) = (f, F).

Research in progress: Anna Rozanova-Pierrat (CentraleSupélec),
Patrick Ciarlet (ENSTA Paris) et al.
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