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Abstract:

Using non-smooth, or fractal, models in scientific and industrial
applications is a very promising area of research, which may allow us
to find optimal solutions to many problems not solvable by smooth
methods. On the other hand, irregular or fractal objects and images
are ubiquitous around us, from the smallest quantum scales to the
structure of clusters of galaxies. Therefore, it is important in theory
and in many applications to consider boundary value problems
involving fractal domains. The talk will discuss the recent progress
and challenges in adopting classical boundary value problems to the
setting of non-smooth geometries. The potential applications include
the better design of absorption materials, sharp recognition of
non-smooth images, and faster algorithms for fluid dynamics
computations. The presentation will be based on recent and
in-progress joint work with Anna Rozanova-Pierrat, Frédéric
Magoulés, Adrien Dekkers, Gabriel Claret (CentraleSupélec), Michael
Hinz (Bielefeld), Luke Rogers (UConn), Maria Rosaria Lancia (Rome
Sapienza), Patrick Ciarlet (ENSTA Paris).
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1. Introduction and motivation

» *Strichartz: A fractafold, a space that is locally modeled on a
specified fractal, is the fractal equivalent of a manifold.

» A “fractafold” is to a fractal what
a manifold is to a Euclidean half-space.

This is a part of the broader program to develop probabilistic, spectral
and vector analysis on singular spaces by carefully building
approximations by graphs or manifolds.



What is the first well-known appearance of fractals is
science?

In a sense, the simplest possible fractal appears in the famous Zeno’s
paradoxes: Zeno of Elea (c. 495 — c. 430 BC) "Achilles and the
Tortoise"

1. Achilles runs to the tortoise’s starting point while the tortoise
walks forward.

2. Achilles advances to where the tortoise was at the end of Step 1
while the tortoise goes yet further.

3. Achilles advances to where the tortoise was at the end of Step 2

while the tortoise goes yet further.
Etc.

Apparently, Achilles never overtakes the tortoise, since however
many steps he completes, the tortoise remains ahead of him.



Dichotomy paradox: that which is in locomotion must arrive at the
half-way stage before it arrives at the goal. In a race, the quickest
runner can never overtake the slowest, since the pursuer must first
reach the point whence the pursued started, so that the slower must
always hold a lead. [Aristotle, Physics VI:9, 239b10, 239b15]

*k%k

In 1821, Augustin-Louis Cauchy proved that, for —1 < x < 1,

a
at+ax+ax®+ax®+..= T S(a, x)

This is a weakly-self-similar sum satisfying a re-normalization
“fixed-point” functional equation

S(a,x) =a+ x- S(a, x)



Cantor, Sierpinski, Julia, Mandelbrot

» How Long Is the Coast of Britain? Statistical Self-Similarity and
Fractional Dimension (Mandelbrot 1967).

The coastline paradox: the measured length of a stretch of coastline
depends on the scale of measurement.

Fractal titanium oxide under inverse 10-ns laser deposition in air and
water. A. Pan, W. Wang, X. Mei, Q. Lin, J. Cui, K. Wang, Z. Zhai
Applied Physics A volume 123, Article number: 253 (2017)
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Fig. 5 Surface morphology of titanium with the laser energy of b shows a typical fractal structure unit, and inset ¢ is size distribution
86 mJ, scanning speed of 0.01 mm/s, and scan length of 10 mm. Inset histograms of 50 fractal structure units
a depicts the surface morphology beyond laser irradiation zone. Inset
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As first pointed out by Bardeen and Ginzburg in the early sixties"?,
the amount of magnetic flux carried by vortices in super-
conducting materials depends on their distance from the sample
edge, and can be smaller than one flux quantum, ¢, = h/2e (where
h is Planck’s constant and e is the electronic charge). In bulk
superconductors, this reduction of flux becomes negligible at sub-
micrometre distances from the edge, but in thin films the effect
may survive much farther into the material>*. But the effect has
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PACS 74.78.Na -~ Mesoscopic and nanoscale systems
PACS 74.25.0p — Mixed state, critical fields, and surface sheaths

Abstract — Within the Ginzburg-Landau formalism, we study the mixed state of a superconduct-
ing disk surrounded by a magnetic ring. The stray field of the magnet, concentrated at the rim of
the superconducting disk, favors ring-like arrangement of induced vortices, to the point that even
a single vortex state exhibits asymmetry. A novel route for the destruction of superconductivity
with increasing magnetization of the magnetic coating is found: first all vortices leave the sample,
and are replaced by a re-entered Meissner phase with a full depression of the order-parameter
at the sample edge; subsequently, superconductivity i ls then gradually suppressed from the edge
inwards, contrary to the well-k surface supe When exposed to an additional
homogeneous magnetic field, we find a field-polarity-dependent vortez structure in our sample

for all vorticities, only giant- or multi-vortex states are found for given polarity of the
external field. In large samples, the number of vortex shells and number of fluz quanta in each of
them can be controlled by the parameters of the magnetic coating.

Copyright © EPLA, 2007



Novel vortex phenomena in a supercond disk with coating
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Fig. 2: The free energy of the states with different vorticity L as a function of the magnetization of the magnetic coating. Insets

show the Cooper-pair density

of the cor di

states. (a-c) Superconducting phase and (d-f) [¢|*-density

plots, illustrate simultaneous vortex exit and suppression of superconductivity at the rim of the superconducting disk for high

magnetization.



In our theoretical treatment of this system, we use the
non-linear Ginzburg-Landau (GL) formalism, combined
with Neumann boundary conditions (zero current perpe-
trating the boundary). To investigate the superconduct-
ing state of a sample with volume V| we minimize, with
respect to the order parameter ¢, the GL free energy

dv = - 1
F= [ (1669~ A= Aotz =162 + 1ot
@



Minimization of eq. (2) leads to equations for the order
parameter and superconducting current

(—iV — A2 =(1- )y, (3)
7=SW*Vy) - [¢A4, (4)

which we solve following a numerical approach proposed
by Schweigert et al. (see ref. [2]) on a uniform Cartesian
grid with typically 10 points/¢ in each direction. We then
start from randomly generated initial distribution of 1,
increase/decrease the magnetization of the magnet or
change the value of the applied external field, and let
eq. (3) relax to its steady-state solution. In addition, we
always recalculate the vortex structure starting from the
pure Meissner state!(y) =1) or the normal state (1 ~0)
as initial condition. All stable states are then collected
and their energies are compared to find the ground state
configuration.



M. V. Milogevi¢ et al.
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Fig. 3: Free energy diagram for a large superconducting disk with thin magnetic coating. Insets show the [¢[*-density plots of
distinct vortex states.
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Fig. 4: (a) Free energy of a superconducting disk with magnetic coating as a function of applied homogeneous magnetic field.
Insets show the Cooper-pair density plots for indicated states. (b) Same as (a), but for demagnetized coating. In (b), dashed
lines denote multi-vortex and solid lines giant-vortex configurations.
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Fig. 5: The |¢/*-density plots illustrating the arrangement of vortex shells in a large superconducting disk for L =53 and
L =60, with magnetic coating with (a,c) negative (M = —8H.z), or (b.d) positive (M = 8H.2) magnetization.
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4.2 The Bogomol'nyi identities

For the special value k = %, the equations for ¢ and A can be reduced
to first order differential equations. This special point was first used by
Sarma [41] in his discussion of type-I vs. type-II superconductors and then
identified by Bogomol’nyi [40] in the more general context of stability and
integrability of classical solutions of some quantum field theories. This
special point is also called a duality point. We first review some properties of
the Ginzburg-Landau free energy at the duality point. We use the following
identity true for two dimensional systems

(V —iA)yg|* = Dy + V x 7+ Bly|? (64)

where 7= Im(y* V) — )| 4 is the current density and the operator D is
defined as D = 8, + 0y — i(A; + iAy). This relation is a relative of the
Weitzenbock formula (61). At the duality point k = % the expression (63)

for F can be rewritten using (64) as

F= /Q (%|B — 14w+ |D¢|2> + ]gﬂ(ﬂ A.dl (65)



2. Wave absorption: numerical shape optimization

» F. Magoulés, T.P. Kieu Nguyen, P. Omnes, A. Rozanova-Pierrat,
Optimal absorption of acoustic waves by a boundary.
SIAM J. Control Optimization 59 (2021)
+ more numerical results
» C. Bardos, D. Grebenkov, A. Rozanova-Pierrat,
Short-time heat diffusion in compact domains with discontinuous
transmission boundary conditions.
Math. Mod. Meth. Appl. Sci. 26 (2016)
» A. Rozanova-Pierrat, D. S. Grebenkov, and B. Sapoval,
Faster diffusion across an irregular boundary.
Phys. Rev. Lett. 108 (2012)
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3. Wave absorption: theoretical shape optimization

» Anna Rozanova-Pierrat, "Generalization of Rellich—-Kondrachov
Theorem and Trace Compactness for Fractal Boundaries."
Volume ICIAM 2019 Proceedings. Fractals in Engineering:
Theoretical aspects and Numerical approximations. Springer
International Publishing, 2021.

» A. Dekkers, A. Rozanova-Pierrat, Dirichlet boundary valued
problems for linear and nonlinear wave equations on arbitrary
and fractal domains, J. Math. Anal. Appl. 512 (2022)

» A. Dekkers, A. Rozanova-Pierrat, A. Teplyaev, Mixed boundary
valued problems for linear and nonlinear wave equations in
domains with fractal boundaries, Calc. Var. PDE 61 (2022)

» M. Hinz, A. Rozanova-Pierrat, A. Teplyaev Non-Lipschitz uniform
domain shape optimization in linear acoustics SIAM J. Control
Optim. 59 (2021)

» M. Hinz, A. Rozanova-Pierrat, A. Teplyaev Boundary value
problems on non-Lipschitz uniform domains: Stability,
compactness and the existence of optimal shapes Asymptotic
Analysis (2023)



4. Equations used in architecture

» M. Hinz, F. Magoulés, A. Rozanova-Pierrat, M. Rynkovskaya, A.
Teplyaev, On the existence of optimal shapes in architecture.
Applied Mathematical Modelling 94 (2021)

Given a domain  C RN and a vector field v e W'2(Q)N we denote
the symmetric part of its gradient by

e(v) = % (Vv + (VV)h).

Let A € L°°(Q, M$(c, 8)) and write o(v) = Ae(v), v e Wh2(Q)N.
We are interested in solutions u € W'2(Q)N of BVP:

—divo(u) =f inQ,
u =0 on r])il-, (1)
o(u)-n =g onTlye.



5. Wentzell Boundary conditions

» A. Wentzell. On boundary conditions for multi-dimensional
diffusion processes. Theor. Probability Appl. (1959)

E(u) = /Q IV uldx + Eoa(u)



5.1 Theoretical study

» M. R. Lancia, P. Vernole,
Venttsel’ problems in fractal domains
J. Evol. Equ. 14 (2014), no. 3, 681-712.

» M. Hinz, M. R. Lancia, A. Teplyaev, P. Vernole, Fractal snowflake
domain diffusion with boundary and interior drifts, J. Math. Anal.
Appl. 457 (2018)

E(u) = /Q IV uldx + Eoa(u)



5.2 Discrete approximations

» M. Gabbard, C. Lima, G. Mograby, L. G. Rogers, A. Teplyaey,
Discretization of the Koch Snowflake Domain with Boundary
and Interior Energies, SEMA SIMAI Springer Series ICIAM2019
Fractals in engineering: Theoretical aspects and Numerical
approximations (2021)

E(u) = /Q IV ul2dx + Eon(u)















FI1GURE 5. Contour Plots of the Eigenvectors of L,, corresponding to eigenvalues A: (a) 4th
eigenvector, A = 48.1. (b) 5th eigenvector, A = 48.1. (c) 6th eigenvector, A = 85.1. (d) 8th
eigenvector A = 125.4. (e) 1153rd eigenvector A = 49965.7. (f) 1157th eigenvector A = 50156.6.
(g) 1161st eigenvector, A = 50188.8 and (h) 1162nd eigenvector, A = 50188.83. Blue regions
indicate the values of an eigenvector in (—e¢,¢€), red regions in (¢,00) and green regions in
(—o0, —¢€), where € = 0.01. (Level 4 graph approximation)
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Ficure 6. (Upper) Eigenvalue counting functions of Dirichlet Laplacian (orange) and L,
(blue). (Lower) Log-Log plot of the eigenvalue counting functions of Dirichlet Laplacian (or-
ange) and L,, (blue) (Level 4 graph approximation).



FIGURE 7. (a) The 5,028th eigenvector of L,,, A = 118038.02. (b) The last Dirichlet eigenvec-
tor, A = 118039.37. The oval-shaped graph is due to a high oscillation of both eigenvectors



FIGURE 8. The last L, eigenvector, A = 524999.69. The graph splits into two parts, above
and below the Koch snowflake domain due to a high oscillation (Level 4 graph approximation).



FIGURE 9. L, eigenvectors localization with eigenvalues A: (a) 5030th eigenvector, A\ =
118048.66. (b) 5031th eigenvector, A = 119678.65. (c) 5032th eigenvector, A = 119678.65.
(d) 5033th eigenvector, A = 121460.72. (e) 5100th eigenvector, A = 185367.41. (f) 5200th
eigenvector, A = 291364.38. (g) 5300th eigenvector, A = 392584.97. (h) 5557th eigenvector,
A = 524999.69. Blue regions indicate the values of an eigenvector in (—¢,¢€), red regions in
(€,00) and green regions in (—oo, —e), where € = 0.01 (Level 4 graph approximation).



5550 Eigenvalue: 32945826174
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FiGURE 10. The high frequency landscape vector attains just the following two values the
boundary vertices 527360 and 524288. It is constant on the interior vertices with the value
157464. (Level 4 graph approximation)



6. New Frontiers: Layer potentials
o
u(x) = [ p(y) 5 Px.y)do(y)

vix) = Gxf= [ gx.ydu(y)



6.1 Riemann-Hilbert and Poincare variational
problems

Find a function in C, unanlytic outside of a curve, with
prescribed values and jumps on the curve.

Research in progress: Anna Rozanova-Pierrat, Gabriel Claret
(CentraleSupélec), Michael Hinz (Bielefeld).

Calssical applications:
» Integrable models, inverse scattering or inverse spectral problem
» the inverse monodromy problem for Painlevé equations
» Orthogonal polynomials, Random matrices
» Combinatorial probability
» Algebraic geometry, Donaldson—Thomas theory



6.2 Hilbert transform

u(r) ,
(f—‘r)

Research in progress: Anna Rozanova-Pierrat, Gabriel Claret
(CentraleSupélec), Michael Hinz (Bielefeld).

H()(t) = Lp.v /

Closely connected to the Riemann-Hilbert and Poincare variational
problems and is extensively used in analysis and in sygnal
processing.



7. New Frontiers: Maxwell and other vector equations

We develop new mathematical tools in the vector case in order to
study and solve Maxwell’s equations in non-Lipschitz, possibly fractal
domains. To that extent, we would like to show here one use of those
tools with the time-harmonic Maxwell problem completed with a

homogeneous Dirichlet boundary condition, which becomes with our
notations:

curl(p='curlE) — w?cE=f onQ
Trr(E)=0 on 9N

where f € L?(R2) and we look for E € H(curl, Q).
This problem is equivalent to the following variational formulation:
Find E € Hy(curl, Q) such thatVF € Hy(curl, Q2):

(= 'curl E, curl F) — w?(¢E, F) = (,F).

Research in progress: Anna Rozanova-Pierrat (CentraleSupélec),
Patrick Ciarlet (ENSTA Paris) et al.



Analysis on fractals and networks, and applications
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Scientific Committee: Simon N. Chandler-Wilde (University of
Reading), Marco Marletta (Cardiff University), Katarzyna
Pietruska-Paluba (University of Warsaw), Alexander Teplyaev
(University of Connecticut), Martina Zahle (Friedrich Schiller
University Jena). Organizing Committee: Michael Hinz (Bielefeld
University), Maria Rosaria Lancia (Sapienza University of Rome),
Anna Rozanova-Pierrat (Université Paris-Saclay)



Thank you for your attention!
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