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Abstract:

The talk will present bounded variation (BV) and fractional Sobolev
functional spaces, Besov critical exponents, and isoperimetric and
Sobolev inequalities associated with fractional Laplacians on metric
measure spaces. The main tool is the theory of heat
semigroup-based Besov classes in Dirichlet Metric Measure Spaces
that uses a Korevaar-Schoen space approach in a general framework
of strongly local Dirichlet spaces with a heat kernel satisfying
sub-Gaussian estimates. Under a weak Bakry-Emery curvature type
condition, which is new in this setting, this BV class is identified with a
heat semigroup-based Besov class. As a consequence of this
identification, properties of BV functions and associated BV measures
can be studied in detail. In particular, we prove co-area formulas,
global Sobolev embeddings, and isoperimetric inequalities. It is
shown that for nested fractals or their direct products, the BV class
we define is dense in L'. The examples of the unbounded Vicsek set,
unbounded Sierpinski gasket, and unbounded Sierpinski carpet are
discussed. This is a joint work with Patricia Alonso-Ruiz, Fabrice
Baudoin, Li Chen, Luke Rogers, and Nageswari Shanmugalingam.



Plan of the talk:

BV spaces on fractals with Dirichlet forms
Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke Rogers,
Nages Shanmugalingam, T.
Definitions of BV and wBE (k)

Introduction: analysis on “fractafolds™
Physics motivation
Group Theory and Complex Dynamics motivation
Heat Kernel Estimates and Dirichlet Forms
Spectral analysis
Elements of differential geometry

» *Strichartz: A fractafold, a space that is locally modeled on a
specified fractal, is the fractal equivalent of a manifold.

» A “fractafold” is to a fractal what a manifold is to a
Euclidean half-space.



Let K be a fractal [F]. Then a fractafold F based on K is a connected Hausdorff
topological space such that every point z in F has a neighborhood homeomorphic
to a neighborhood in K. There is no generally agreed upon definition of “fractal”,
other than “I know one when I see one” | but there are several well-defined classes of
fractals, such as Kigami’s p.c.f. (post-critically finite) self-similar fractals [Kil]. We
are interested in this class of fractals because one can do analysis on them: under
certain additional hypotheses, one can construct a Laplacian A on K and study
properties of the spectrum of A. (Of course it should be emphasized here that the
Laplacian is not uniquely determined by the topology of K, but rather depends
on certain additional geometric structures, just as the Laplacian on a manifold
depends on the choice of a Riemannian metric.) One of the purposes of introducing
fractafolds in this context is that we may easily extend the Laplacian from K to
F, and thereby obtain a larger class of objects on which to do analysis ([B], [Kil],
[Ki2], [S2]).



BV and Besov spaces on fractals with Dirichlet forms
(Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen,
Luke Rogers, Nages Shanmugalingam, T.)

References: Besov class via heat semigroup on Dirichlet spaces

> |: Sobolev type inequalities
arXiv:1811.04267 J. Funct. Analysis (2020)

»> II: BV functions and Gaussian heat kernel estimates
arXiv:1811.11010 Calc. Var. PDE (2020)

» lll: BV functions and sub-Gaussian heat kernel estimates
arXiv:1903.10078 Calc. Var. PDE (2021)

» BV functions and fractional Laplacians on Dirichlet spaces
arXiv:1910.13330 fo appear in Asian Journal of Mathematics, a
special issue in Memory of Professor Ka-Sing Lau

+ recent papers by Alonso-Ruiz, Fabrice Baudoin, Li Chen



References to Ka-Sing Lau
The authors dedicate this paper to the memory of Ka-Sing Lau,
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Heat kernels on metric measure spaces and an application to
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Trans. Amer. Math. Soc. 355 (2003), no. 5, 2065-2095.

» Q. Gu and K.-S. Lau,
Dirichlet forms and critical exponents on fractals,
Trans. Amer. Math. Soc. 373 (2020), no. 3, 1619—-1652.

» S.-L. Kong and K.-S. Lau,
Critical exponents of induced Dirichlet forms on self-similar sets,
arXiv:1612.01708 (2016).

» S.-L. Kong, K.-S. Lau, and T.-K. L. Wong,
Random walks and induced Dirichlet forms on self-similar sets,
Adv. Math. 320 (2017), 1099-1134.



sub-Gaussian Heat Kernel Estimates (sGHKE)
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dy = Hausdorff dimension

1 = d, = “walk dimension” (y=diffusion index)
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ds = “spectral dimension” (diffusion dimension)

First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami,
Barlow, Bass, Perkins (mid 1980'—)
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For Sierpinski carpets there exists a unique Dirichlet form and
diffusion process due to [Barlow and Bass 1998, 1999] (see also
[Barlow-Bass-Kumagai-T 2010])



In2

Here diy = In— + 1 is the topological-Hausdorff dimension of the
n

Sierpinski carpet defined in Theorem 5.4 in:

[R.Balka, Z.Buczolich, M.Elekes. A new fractal dimension: the
topological Hausdorff dimension. Adv. Math. 2015.]

Roughly speaking,
diy :=

1+ inf{ Hausdorff dim. of boundaries of a base of open sets}

Barlow (Proceedings of SMS Montreal, 2011):

Given a regular fractal F', since L and M are given by the construction, one
can calculate dy easily. The constant p which gives d,, is somehow deeper, and
seems to require some analysis on the set or its approximations. Loosely one can
say that dy is a ‘geometric’ constant, while d,, is an ‘analytic’ constant. One may
guess that in some sense p or /3 are in general inaccessible by any purely geometric
argument. (An exception is for trees, where one has d, = 1 + dj.)



Open questions:

On the Sierpinski carpet,

log 2
k=dyw—di+diy—1=dw — df + &

log 3

would give the best Holder exponent for harmonic functions?
[Strongly supported by numerical results: L.Rogers et al|

Note that (dw — df) —Holder continuity is classical:

Martin Barlow. Diffusions on fractals. In Lectures on probability
theory and statistics (Saint-Flour, 1995), volume 1690 of Lecture
Notes in Math., pages 1-121. Springer, Berlin, 1998.

Martin Barlow. Heat kernels and sets with fractal structure. In
Heat kernels and analysis on manifolds, graphs, and metric
spaces (Paris, 2002), volume 338 of Contemp. Math., pages 11—40.
Amer. Math. Soc., Providence, RI, 2003



BV and weak Bakry-Emery non-negative curvature

Definition
BV(X) := KSM1(X) = B%¥ (X) with o = 71 the L'-Besov
critical exponent, and for f € BV (X)

Var(f) —Ilrriallf//A ,l-if};)(B(f(, ))|) du(y) du(x).

Definition

We say that (X, i, £, F) satisfies the weak-Bakry-Emery
non-negative curvature condition wBE () if there exist a constant
C > 0 and a parameter 0 < « < dw such that for every t > 0,

g e L>(X,u)and x,y € X,

dx,y)*
Pg() — Pl < €T gy @



> If (X, d, 1) satisfies WBE(r) with k = d—,","’, then the form &
admits a carré du champ operator, which means that d,, = 2 by

[Kajino-Murugan 2019 Ann. Probab. 48, 2020]

> « < 1because d(x, y) has to be essentially equivalent to a
geodesic metric [Corollary 1.8, Theorem 2.11 Mathav Murugan
JFA 2020]

» For nested fractals, p.c.f. with sGHKE (1)

A =27 = dwa} = d
» For the Sierpinski carpet we conjecture
Af:)\:zdf—dtH+1

In2
where diy = In—s + 1 is the topological-Hausdorff dimension of
the Sierpinski carpet



For the non-local fractional Laplacian (—L)? for some 0 < § < 1 and
the corresponding subordinated semigroup P( ) with generator p(‘s)

1/p
— sup I—¢ _ () )
115, -—f;gt (/X/le(X) f(y)1Pp; (X,y)du(y)du(X)>

If in addition P; satisfies the weak Bakry-Emery estimate (2), then
also the subordinated semigroup does: there is some x > 0 such
that forall x,y € X and f € L*°(X, p)
( y)*‘"
W

PDf(x) — POf(y)| < € £l oo (x,0); ()



When A¥ = dw — «, then it is natural to define BV as the

Korevaar-Schoen space KS™ ' (X), where, KS™® is the subspace of
LP determined by finiteness of the seminorm

. () — )P, /P
038, Juer oty OIH0)

and Af is the critical exponent defined as

A% := sup{X : KS*P(X) contains non-constant functions}.  (5)

The space KS* ' enjoys many classical BV properties, including
Sobolev embedding, isoperimetric inequalities, and a co-area
formula, as well as an interpretation of the variation as a “BV
measure”.

These properties will be established by comparing the seminorm (4)
with the heat Besov seminorm for a = A/(ddw) and fixed

0 < 4§ < 1, and the corresponding critical exponents Az‘f of the
Korevaar-Schoen spaces and afjp of the heat Besov spaces.



We need Af = dw — k so that KS"?J(X) isBV,and 6 > 1 — 2 to
ensure this latter coincides with the critical heat Besov space.

Of particular interest is that this characterization is independent of the
subordination parameter ¢ in the interval
(A /dw,1) = (1 — k/dw,1).

Intuitively, this result says that although being in BV appears to be a
local property and was initially defined in terms of a local Dirichlet
form and semigroup, we can recover it from the non-local fractional
Laplacian operator and semigroup, as long as the latter it is not “too
non-local”: & > A¥ /dy.

This property of stability in the subordination parameter is consistent
with the possibility of a non-trivial connection between the condition
Af/dw =1 — k/dw and the topological and metric structure of the
space. We conjecture this quantity may depend not only on the
Hausdorff and walk dimensions but also on the topological Hausdorff
dimension.



Open question (Martin Barlow): Are there two fractals
with the same values of df, d,, but different critical
exponents o ?

Preliminary answer is positive if we compare the SC and

Fitzsimmons PJ, Hambly BM, Kumagai T. Transition density
estimates for Brownian motion on affine nested fractals. Comm.
Math. Phys. 1994

based on: Jun Kigami 1992: Hausdorff dimensions of self-similar
sets and shortest path metrics. J. Math. Society of Japan. 1995



Open question (Martin Barlow) follow-up:
Can we construct

» a p.c.f. self-similar fractal, as in Kigami 1993
» with two-sided sub-Gaussian Heat Kernel Estimates (?)
» for any pair of real numbers dy, ds

2ds

dr > 1, m§

dsgdf

ds = ;‘:‘_*1 if dp < oco. See also: Martin Barlow. Which values of the
volume growth and escape time exponent are possible for a graph?
Rev. Mat. Iberoamericana, 2004. Ben Hambly. On the asymptotics of the
eigenvalue counting function for random recursive Sierpinski gaskets.
Probab. Theory Rel. Fields 2000. Brownian motion on a random recursive
Sierpinski gasket. Ann. Probab. 1997. Brownian motion on a
homogeneous random fractal. Probab. Theory Rel. Fields 1992. Jun
Kigami, Michel Lapidus. Weyl's problem for the spectral distribution of
Laplacians on pcf self-similar fractals. Comm. Math. Phys. 1993.



self-similar fractals, Jun Kigami 1989-2009,

Patrick Fitzsimmons, Ben Hambly, Takashi Kumagai 1994
Laakso 2000 ...

Martin Barlow and Steven Evans 2004

Jeff Cheeger and Bruce Kleiner 2015

Patricia Alonso-Ruiz 2018, 2021

. Gamal Mograby, Luke Rogers et al 2023

. with not-back-on-the-envelop calculations ... or with a computer
aSSIsted proof ... a part of a study of projective limit fractals, in
particular, affine p.c.f. bubble-diamond fractals

No ook owbd

G Ga

See also Lang and Plaut 2001.



Further examples of spaces to which our theory applies can be
constructed by taking products of nested (sGHKE p.c.f.) fractals
where the condition wBE(x = dw — df) is valid.

The n-fold product X" supports a heat kernel obtained by tensoring,
the walk dimension remains dw on the product and wBE(dw — df) is
still true and the Hausdorff dimension is now nd;.

Theorem. If X is a nested fractal, then for every n € N, the space
BV(X") = B"%/dw(X") is dense in L' (X", u®") and our
WBE (x) Assumption is satisfied.



For nested fractals we do have k = dw — df > 0.
A set has finite perimeter if and only if it has finite boundary,
P(E) ~ #(9E).
Theorem (research in progress)
f € BV iff Vf is a “vector valued Radon measure”.
This is understood in the distributional sense (Hinz, Rogers,
Strichartz et al)
Corollary (research in progress)
1. on the Vicsek set, any BV function is R'-BV along each
geodesic path.
2. on the Sierpinski gasket, any BV function is discontinuous.

{%41%
et




For Sierpinski carpets,
o > (df — dw +1)/dw, (6)

However the Barlow-Bass theory only yields wBE (k) for
K = dw — df, not for

k=dw — df + diy — 1.

We believe equality holds in (6) for o7 and post an open question
about the weak Bakry-Emery estimate at criticality.

Note that, if 1 < dg = 2(;’73 < 2, proving wBE (k) for k > dw — df
would involve improving the Hélder continuity estimates for harmonic
functions in [BB89,BB99,Ba98], strongly supported by numerical
calculations in [L.Rogers et al].

Conjecture: for generalized Sierpinski carpets
a: = (df — dtH + 1)/dw

and the condition wBE (k) is valid for some k > (dw — df) .



Why do we care?

Many reasons, including

» Martin Barlow, Thierry Coulhon, Alexander Grigor’yan.
Manifolds and graphs with slow heat kernel decay.
Invent. Math. 144 (2001), no. 3, 609—649.

» Joint Spectra and related Topics in Complex Dynamics and
Representation Theory: BIRS Banff 23w5033 May 21-26, 2023

» Quantum gravity and other topics in physics
» Applied mathematics



Physics motivation (Intro 1)

» R. Rammal and G. Toulouse, Random walks on fractal structures
and percolation clusters. J. Physique Letters 44 (1983)

» R. Rammal, Spectrum of harmonic excitations on fractals. J.
Physique 45 (1984)

» E. Domany, S. Alexander, D. Bensimon and L. Kadanoff,
Solutions to the Schrédinger equation on some fractal lattices.
Phys. Rev. B (3) 28 (1984)

» Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on

fractals. I. Quasilinear lattices. Il. Sierpiriski gaskets. Ill. Infinitely
ramified lattices. J. Phys. A 16 (1983)17 (1984)



6/14/2014 Frangois Englert - Wikipedia, the free encyclopedia

Francois Englert

From Wikipedia, the free encyclopedia

Francois Baron Englert (French: [agleg]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of'the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,

C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.[4] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,

Francois Englert

Frangois Englert in Israel, 2007




Nuclear Physics B280 [FS 18] (1987) 147-180
North-Holland, Amsterdam

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES

F. ENGLERT, J.-M. FRERE! and M. ROOMAN?

Physique Théorique, C.P. 225, Université Libre de Bruxelles, 1050 Brussels, Belgium

Ph. SPINDEL

Faculté des Sciences, Université de 'Etat a Mons, 7000 Mons, Belgium

Received 19 February 1986

We take a model of foamy space-time structure described by self-similar fractals. We study
the propagation of a scalar field on such a background and we show that for almost any initial
conditions the renormalization group equations lead to an effective highly symmetric metric at
large scale.



al. / Metric space-time
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Fig. 1. The first two iterations
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = — /(B + 1) separates the domain of euclidean

metrics from minkowskian metrics and corresponds — except at the origin - to 1-dimensional metrics. M,, M,, M; denote unstable minkowskian
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 0y, 0, and 0, associated to 0-dimensional
geometries are located at the origin and at infinity on the (a, B) coordinates axis. The six straight lines are subsets invariant with respect to the

recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of

them the 10th point (a = —56.4, B = —52.5) is outside the frame of the figure.
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the euclidean fixed point. Vertices are labelled according to fig. 4.
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Figure 6.4. Geometric interpretation of Proposition 6.1.



week ending
PRL 95, 171301 (2005) PHYSICAL REVIEW LETTERS 21 OCTOBER 105

The Spectral Dimension of the Universe is Seale Dependent

I, Ambjgm,"** . Jurkiewicz, " and R, Lol

"The Nils Bohr Instne Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark
"Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University,
Reymonta 4, PL 30-059 Krakow, Poland
JTnstitute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3384 CE Utrecht, The Netherlands
(Received 13 May 2005; published 20 October 2005)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing” at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOL 10.1103/PhysRevLett 95.171301 PACS numbers: 04.60.Gw, 04.60Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator’—A shared  tral dimension, a diffeomorphism-invariant quantity ob-
hope of researchers in otherwise disparate approaches to  tained from studying diffusion on the quantum ensemble
quantum gravity s that the microstructure of space and o geometries. On large scales and within measuring ac-
time may provide a physical regulator for the ultraviolet ~ curacy, it is equal to four, in agreement with earlier mea-
infinities enconntered in nermrhative anantim field thearv.— surements of the larce-seale dimensionality hased on the



other hand, the “‘short-distance spectral dimension,” ob-
tained by extrapolating Eq. (12) to o — 0 is given by

Dy(o = 0) = 1.80 * 0.25, (15)

and thus is compatible with the integer value two.

Random Geometry and Quantum Gravity

A thematic semestre at Institut Henri Poincaré

14 April, 2020 - 10 July, 2020

Organizers : John BARRETT, Nicolas CURIEN, Razvan GURAU,
Renate LOLL, Gregory MIERMONT, Adrian TANASA
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Fractal space-times under the microscope:
a renormalization group view on Monte Carlo data

Martin Reuter and Frank Saueressig
Institute of Physics, University of Mainz,
Staudingerweg 7, D-55099 Mainz, Germany
E-mail: reuter@thep.physik.uni-mainz.de,
saueressig@thep.physik.uni-mainz.de

ABSTRACT: The emergence of fractal features in the microscopic structure of space-time
is a common theme in many approaches to quantum gravity. In this work we carry out a
detailed renormalization group study of the spectral dimension d; and walk dimension d,,
associated with the effective space-times of asymptotically safe Quantum Einstein Grav-
ity (QEG). We discover three scaling regimes where these generalized dimensions are ap-
proximately constant for an extended range of length scales: a classical regime where
ds = d,d,, = 2, a semi-classical regime where dy = 2d/(2+d), d,, = 2+d, and the UV-fixed
point regime where dy = d/2,d,, = 4. On the length scales covered by three-dimensional
Monte Carlo simulations, the resulting spectral dimension is shown to be in very good

agreement with the data. This comparison also provides a natural explanation for the ap-
parent puzzle between the short distance behavior of the spectral dimension reported from
Causal Dynamical Triangulations (CDT). Euclidean Dynamical Triangulations (EDT), and
Asymptotic Safety.

KEYWORDS: Models of Quantum Gravity, Renormalization Group, Lattice Models of Grav-
ity, Nonperturbative Effects




Fractal space-times under the microscope: A
Renormalization Group view on Monte Carlo data

(Martin Reuter, Frank Saueressig):

Three scaling regimes of the effective space-times of asymptotically
safe Quantum Einstein Gravity (QEG):

1. aclassical regime ds = d, d, = 2,

2. a semi-classical regime ds = 2d/(2+ d), dyw =2+ d,

3. the UV-fixed point regime ds = d/2, dy = 4.
On the length scales covered by three-dimensional Monte Carlo
simulations, the resulting spectral dimension is in very good
agreement with the data and provides a natural explanation for the
apparent puzzle between the short distance behavior of the spectral
dimension reported from Causal Dynamical Triangulations (CDT),
Euclidean Dynamical Triangulations (EDT), and Asymptotic Safety.

» In the talk of Mathav Murugan:
> d, = dr which is consistent with ds = 2d;/dw = 2



P » 0 o2/ @@ B 9 (& O 2

Causal dynamical triangulations

25,971 views Jan 26, 2013 Causal dynamlcal trlangulatlon (CDT) is a lattice model
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Dynamical triangulation of the 2-torus

1,435 views Sep 7, 2013 This video illustrates a Monte Carlo simulation for two-dimensional
quantum gravity on a torus. Starting with a regular triangulation of the torus repeatedly a so-called
flip move is performed on a randomly chosen edge. The triangulations obtained after a large
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Dynamical triangulation of the 2-torus

1,435 views Sep 7,2013 This video illustrates a Monte Carlo simulation for two-dimensional
quantum gravity on a torus. Starting with a regular triangulation of the torus repeatedly a so-called
flip move is performed on a randomly chosen edge. The triangulations obtained after a large



Group Theory and Complex Dynamics (Intro 2)

The basilica Julia set, the Julia set of 22 — 1 and the limit set of the
basilica group of exponential growth (Grigorchuk, Zuk, Bartholdi,
Virag, Nekrashevych, Kaimanovich, Nagnibeda et al.).



Asymptotic aspects of Schreier graphs and Hanoi Towers groups

Rostislav Grigorchuk !, Zoran Sunik
Department of Mathematics, Tezas AGM University, MS-3368, College Station, TX, 77843-3368, USA
Received 23 January, 2006; accepted after revision +-+-+-+-+
Presented by Ftienne Ghys

Abstract

‘We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier
graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since
they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite
this article: R. Grigorchuk, Z. Sunik, C. R. Acad. Sci. Paris, Ser. I 344 (2006).

Figure 1. The automaton generating H*) and the Schreier graph of H®) at level 3 / L’automate engendrant H(*) et le
graphe de Schreier de H®) au niveau 3



W Tours de Hanoi — Wikipédia
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Tours de Hanoi

of Pour les articles homonymes, voir Hanoi (homonymie).

Les tours de Hanoi (originellement, la
tour d'Hanoi®) sont un jeu de réflexion
imaginé par le mathématicien francais

Edouard Lucas, et consistant & déplacer
des disques de diamétres différents d'une

=]

Modele d'une tour de Hanoi (avec

tour de « départ » a une tour d'« arrivée » Huit disgues).

en passant par une tour « intermédiaire »,
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Heat Kernel Estimates and Dirichlet Forms (Intro 3)

dw
d R dw—1
9y )
tdw—1

1
pi(x,y) ~ 1dr/dy SXP (

distance ~ (time)d17

dy = Hausdorff dimension

1 = d,, = “walk dimension” (y=diffusion index)

2d; _
dv —

2

ds = “spectral dimension” (diffusion dimension)

First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami,
Barlow, Bass, Perkins (mid 1980'—)



Stability Theorem (Barlow, Bass, Kumagai (2006))

Under natural assumptions on the MMD (geodesic Metric Measure
space with a regular symmetric conservative Dirichlet form), the
sub-Gaussian heat kernel estimates are stable under rough
isometries, i.e. under maps that preserve distance and energy up to
scalar factors.

Gromov -Hausdorff + energy



Theorem. (Barlow, Bass, Kumagai, T. (1989-2010).) On any
generalized Sierpinski carpet there exists a unique, up to a scalar
multiple, local regular Dirichlet form that is invariant under the local
isometries.

Therefore there is a unique symmetric Markov process and

a unique Laplacian.

Moreover, the Markov process is strong Feller and its transition

density satisfies sub-Gaussian heat kernel estimates.

Main difficulties:If it is not a cube in R”, then

>
>

>
>

v

dS < df! dw > 2

the energy measure and the Hausdorff measure are mutually
singular;

the domain of the Laplacian is not an algebra;

if d(x, y) is the shortest path metric, then d(x, -) is not in the
domain of the Dirichlet form (not of finite energy) and so methods
of Differential geometry seem to be not applicable;

Lipschitz functions are not of finite energy;

in fact, we can not compute any functions of finite energy;
Fourier and complex analysis methods seem to be not
applicable.



The half-face Ay corresponds to a “slide move”,
and the half-face A} corresponds to a “corner move”,
analogues of the “corner” and “knight’s” moves in [BB89].
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However, it seems the uniqueness can fail in some natural settings,
such as repeated barycentric subdivisions.

Theorem (Kelleher, Panzo, Brzoska, T.). The dual triangular and
edge graphs have reciprocal resistance scaling factors p = 1/pT with
5/4 < p < 3/2.

Conjecture. The reflection-invariant
Dirichlet form is not unique.




BARLOW-BASS RESISTANCE ESTIMATES FOR HEXACARPET
o

FIGURE 3. On the left: the graph GT for barycentric subdivision
of a 2-simplex. On the right: the adjacency (dual) graph Gjy.




Spectral analysis (Intro 4)

Theorem. (Derfel, Grabner, Vogl; T.; Kajino (2007-2011)) For a large
class of finitely ramified symmetric fractals, which includes the
Sierpinski gaskets, and may include the Sierpinski carpets, the

spectral zeta function
JOEDIPHE

has a meromorphic continuation from the half-pain Re(s) > ds to C.
Moreover, all the poles and residues are computable from the
geometric data of the fractal. Here A; are the eigenvalues if the
uniqgue symmetric Laplacian.

» Example: {(s) is the Riemann zeta function up to a trivial factor
in the case when our fractal is [0, 1].

» In more complicated situations, such as the Sierpinski gasket,
there are infinitely many non-real poles, which can be called
complex spectral dimensions, and are related to oscillations in
the spectrum.



A
)] ° O __ log9

ds = log 5
O ° O

_ log4

10) ° @) dp = log 5
r\O -dR ! 1 r\ds
D o O
O ° O
O ° O

Poles (white circles) of the spectral zeta function of the Sierpinski gasket.



A part of an infinite Sierpinski gasket.



Figure: An illustration to the computation of the spectrum on the

infinite Sierpinski gasket. The curved lines show the graph of the
function 2R(-).

Theorem. (T. 1998, Quint 2009) On the Barlow-Perkins infinite
Sierpinski fractafold the spectrum of the Laplacian consists of a
dense set of eigenvalues 917 '(X,) of infinite multiplicity and a
singularly continuous component of spectral multiplicity one
supported on 3 ~1(JR).



The Tree Fractafold.



An eigenfunction on the Tree Fractafold.
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Theorem. (Strichartz, T. 2010) The Laplacian on the periodic
triangular lattice finitely ramified Sierpinski fractal field consists of
absolutely continuous spectrum and pure point spectrum. The
absolutely continuous spectrum is 9310, ?]. The pure point
spectrum consists of two infinite series of eigenvalues of infinite
multiplicity. The spectral resolution is given in the main theorem.



Elements of differerential geometry (Intro 5)

» J. Cheeger, Differentiability of Lipschitz functions on metric
measure spaces, Geom. Funct. Anal. (1999)

» J. Heinonen, Lectures on analysis on metric spaces. Universitext
2001. Nonsmooth calculus, Bull. Amer. Math. Soc. (2007)

» J. Heinonen, P. Koskela, N. Shanmugalingam, J. Tyson, Sobolev
classes of Banach space-valued functions and quasiconformal
mappings. J. Anal. Math. 85 (2001)

» M. Bonk, L. Capogna, and X. Zhou, Green functions in metric
measure spaces, Preprint, November 2022

Can we define harmonic differential forms, a de Rham complex, and
obtain a version of de Rham’s theorem?



Standard self-similar carpet S, Non self-similar carpet S,
witha = (3, 3, 3> -+) witha = (3, 3, 7---)
Proposition

(Mackay/Tyson/Wildrick’13) If a € I? then S, has positive two dim
Lebesgue measure and “all classical-type Sobolev inequalities”.

Theorem (Hinz/T. ’15)
1-dim Hodge-Helmholtz composition holds (despite that dimy = 2).

Theorem (Hinz/T. ’17)

Ifa € P,limy 00 2= = 0 then dom(curl*) = {0} and (curl, C")
is not closable.
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7th Cornell Conference on Analysis, Probability, and
Mathematical Physics on Fractals: June 4-8, 2022

In Memory of Professor Robert Strichartz

We will be dediicating the entire conference to Professor Strichartz. A special session will be scheduled during the
conference for all to attend and reflect on their thoughts and memories of Bob. Bob is appreciated and recognized
for his organizing of the Fractals Conference Community in 2002. He will be profoundly missed by family, friends,
colleagues, and most of all, the students he mentored and influenced throughout his career.

A message from the Cornell Department of Mathematics Chair, Tara Holm:

Dear friends,

Tam sad to share that our colleague and friend Professor Robert Strichartz died yesterday, 19 December 2021, after a
long illness. He was 78.



,\ &\ ;'
8th Cornell Conference on Analysis,

Probability, and Mathematical Physics
on Fractals:

Everybody is invited ! June 2025
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